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Mini-Circuits...Your partners for success since 1969

Mini-Circuits’ monolithic, surface-mount GVA amplifiers are 
extremely broadband, with wide dynamic range and the 
right gain to fit your application. Based on high-performance 
InGaP HBT technology, patented GVA amplifiers cover DC* to 
7 GHz, with a selection of gain choices 10, 15, 20 or 24dB, 
(measured at 1 GHz). They provide better than +20 dBm 
typical output power, with typical IP3 performance as high 

as +41 dBm at 1 GHz. Supplied in RoHS-compliant, SOT-89  
housings, low-cost GVA amplifiers feature excel lent 
input/output return loss and high reverse isolation. With 
built-in ESD protection, GVA amplifiers are unconditionally 
stable and designed for a single 5-V supply. For more on 
broadband GVA amplifiers, visit the Mini-Circuits’ web site 
at www.minicircuits.com. 

DC to 7 GHz  from $182
ea. (qty. 25)
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+20 dBm Power Amplifiers with a choice of gain!

PLIFIERS

*Low frequency determined by coupling cap.US patent 6,943,629

®

The Design Engineers Search Engine finds the model you need, Instantly • For detailed performance specs & shopping online see

        IF/RF MICROWAVE COMPONENTS
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[from the EDITOR]

R
apid advancement of our 
information society necessi-
tates prompt update and 
expansion of the technical 
scope and focus of interest of 

our IEEE Signal Processing Society 
(SPS). Compared with just some years 
ago, the current focus of signal process-
ing as an enabling technology has been 
significantly broadened. Now it encom-
passes theories, architectures, algorithms, 
implementations, and applications for the 
transformation of information contained 
in many different physical, symbolic, or 
abstract formats that we broadly desig-
nate as “signals.” Methodology wise, sig-
nal processing uses mathematical, 

statistical, computational, heuristic, and/
or linguistic representations, formalisms, 
and techniques for sensing, acquisition, 
extraction, representation, modeling, 
analysis, synthesis, compression, detec-
tion, recovery, decomposition, enhance-
ment, rendering, display, learning, 
recognition, un derstanding, securing, 
authenticating, and communicating of 
information and signals. Such diverse 
“processing” tasks are accomplished by 
either digital or analog devices or algo-
rithms, and in the form of either software, 
hardware, or firmware.

New elements in the updated focus of 
interest above are reflected particularly 
by the expanded members of the “sig-
nal,” as pursued currently by a wide 
range of work of the SPS’s 11 technical 

areas. The updated “signal” members 
cover any abstract, symbolic, or physical 
manifestation of information with exam-
ples that include: audio, music, speech, 
text, image, graphics, video, multimedia, 
sensor, communication, geophysical, 
sonar, radar, biological, chemical, mo-
lecular, genomic, medical, data, or 
 sequences of symbols, attributes, or nu-
merical quantities.

The expanded technical scope of our 
Society presents new challenges for 
IEEE Signal Processing Magazine, espe-
cially with respect to its role of educat-
ing our readers in new trends and in 
cross-pollinating technical areas. Signal 
processing is a vibrant and inherently 

New Focus, New Challenge

Li Deng 
Editor-in-Chief

deng@microsoft.com
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For Commercial, Military, and Industrial Use, Mini-Circuits proudly presents the 
MCA1 series of Low Temperature Co-fired Ceramic (LTCC) frequency mixers. Highly 
reliable, only 0.080” in height, and “tough as nails”, these patented mixers have all 
circuitry hermetically imbedded inside the ceramic making them temperature stable 
and impervious to most environmental conditions. The process also gives you high 
performance repeatability and very low cost. There’s a variety of broadband models 
and LO power levels to choose from, so you can use these mixers in a multitude of 
designs and applications. And MCA1 mixers are ideal for the COTS program! Just 
check all the specs on our web site. Then, choose the model that best fits your 
needs. Our team is ready to handle your requirements with quick off-the-shelf 
shipments, custom designs, and fast turn-around/high volume production.

Mini-Circuits...Your partners for success since 1969

 

  Model LO Freq. Conv. LO-RF Price
   Level Range Loss  Isol. $ ea. 
   (dBm ) (MHz )   (dB ) (dB ) ( Qty. 10 )  
  MCA1-85L 4 2800-8500 6.0 35 9.45
  MCA1-12GL 4 3800-12000 6.5 38 11.95  
  MCA1-24 7 300-2400 6.1 40 5.95  
  MCA1-42 7 1000-4200 6.1 35 6.95 

MCA1-60 7 1600-6000 6.2 30 7.95
  MCA1-85 7 2800-8500 5.6 38 8.95
  MCA1-12G 7 3800-12000 6.2 38 10.95   
  MCA1-24LH 10 300-2400 6.5 40 6.45 

MCA1-42LH 10 1000-4200 6.0 38 7.45 
MCA1-60LH 10 1700-6000 6.3 30 8.45

  MCA1-80LH 10 2800-8000 5.9 35 9.95  
  MCA1-24MH 13 300-2400 6.1 40 6.95 

MCA1-42MH 13 1000-4200 6.2 35 7.95 
MCA1-60MH 13 1600-6000 6.4 27 8.95

  MCA1-80MH 13 2800-8000 5.7 27 10.95  
  MCA1-80H 17 2800-8000 6.3 34 11.95 
   Dimensions: (L) 0.30” x (W) 0.250” x (H) 0.080”
   U.S. Patent # 7,027,795            

M
CA1

B

LTCC MIXERS
300 MHz-12 GHz

IN STOCK

from ea. (Qty.1000)

$395

For RoHS compliant requirements, 
 ADD + SUFFIX TO BASE MODEL No.  Example: MCA1-85L +  

o S
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[president’s MESSAGE]
Mostafa (Mos) Kaveh

2010–2011 SPS President
mos@umn.edu

I
had the good fortune to join some 
1,200 attendees from around the 
world by participating in the record-
setting 2009 IEEE International 
Conference on Image Processing in 

Cairo, Egypt. I congratulate General 
Chair Prof. Magdy Bayoumi and his 
conference organizing committee for a 
terrific program and a superb venue. The 
outstanding technical program was 
complemented by Egyptian hospitality 
fit for the pharaohs and the opportunity 
for attendees to experience transcen-
dent historical and cultural treasures. 
As the first major event for the Society 
on the African continent, the con-
ference underscored the IEEE Signal 
Processing Society’s (SPS’s) re  newed 
emphasis on regional member develop-
ment and engagement, reflected most 
visibly by the planned addition of four 
elected regional directors to its Board of 
Governors (BoG).

The Cairo meeting also provided the 
opportunity for the BoG to review and 
approve a number of recommendations 
by the Society’s boards and ad hoc vol-
unteer and staff committees. The 
Society’s governance is codified in its 
Constitution, and the organization oper-
ates under its Bylaws, which are aided by 
a set of policies and procedures. In the  
January 2010 issue of IEEE Signal 
Processing Magazine, Past President 
José Moura reported on the work of an 
ad hoc committee of volunteers and staff 
chaired by President-Elect Ray Liu that 
had carried out a significant update of 
the bylaws and policies and procedures. 
As José had anticipated, the BoG ap -
proved these recommendations, which 
establish clear collaboration and report-

ing structures for volunteer leaders and 
staff. The approved documents expand 
and make more open and transparent 
the nominations for Society elections. 
They also increase the portfolio of the 
vice president of awards and me  mbership 
to include the awards board with its 
Fellow Reference Committee, and the 
membership board, which now includes 
the Industrial Relations Committee, the 
new Me  mbership Ser  vices Committee, 
and the Chapters Standing Committee. 

The governance of the membership ser-
vices committee, in turn, includes the 
aforementioned four regionally elected 
directors. The updated Bylaws are more 
concise, clear, and consistent, and the 
new policies and procedures provide the 
detail necessary to manage the enter-
prise, and at the same time, are amena-
ble to updating as necessary for a 
dynamic field such as signal processing. 

The BoG also had the opportunity to 
honor the Society ’s  1994–1995 
 president, Prof. Tariq Durrani, OBE, on 
the occasion of his retirement from the 
faculty and long-time academic leader-
ship at Strathclyde University in 
Glasgow, Scotland. The BoG adopted a 
resolution recognizing Prof. Durrani’s 
significant contributions to the field 
and the Society (and, indeed, the IEEE). 

Another endorsement of honors by the 
BoG was the election of the Dis-
tinguished Lecturers for 2010–2011 (see 
the  “Society News” column on page 6). 
Con gratulations to our colleagues 
Sheila Hemami, Shrikanth Narayanan, 
Antonio Ortega, Venu Veeravalli, and 
Abdelhak Zoubir.

Last summer, the SPS underwent its 
mandated five-year review by the IEEE 
Technical Activities Board (TAB). The 
work of the Society’s volunteers, staff, 
and its operations, programs, products, 
and services received outstanding marks 
by the review committee at TAB’s 
November 2009 meeting. It is easy to be 
complacent in the face of such accom-
plishments and accolades. But the SPS 
continues to forge ahead with new inno-
vations and services for its members 
and the broader community. As Society 
members, you are now receiving elec-
tronic access to SPS publications as part 
of your membership dues, and digital 
delivery of SPS publications has been 
approved for 2010. The inaugural IEEE 
Thematic Meetings on Signal Processing 
(THEMES) will take place the week of 
15 March 2010 in conjunction with the 
IEEE International Conference on 
Acoust ics ,  Speech ,  and  S igna l 
Processing in Dallas, Texas. The Society 
is also pursuing active involvement in 
IEEE’s Smart Grid Initiative. We are 
interested in learning of activities in our 
field that have been applied to this 
 energy-related topic. I look forward to 
seeing many of you in Dallas and/or 
hearing your suggestions by e-mail. 

 [SP]
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SPS: Forging Ahead with New Innovations 
for Its Members

THE WORK OF THE 
SOCIETY’S VOLUNTEERS, 

STAFF, AND ITS OPERATIONS, 
PROGRAMS, PRODUCTS, 
AND SERVICES RECEIVED 

OUTSTANDING MARKS BY 
THE REVIEW COMMITTEE 
AT TAB’S NOVEMBER 2009 

MEETING.
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ESC Silicon Valley brings together systems architects, design engineers,  
suppliers, analysts, and media from across the globe. With cutting edge  
product demonstrations, visionary keynotes, and hundreds of essential  
training classes, ESC is the ideal conference for the embedded design  
community to learn, collaborate, and recognize excellence.

ESC Silicon Valley 2010 features: 
 

 
 

 
 

 

Silicon Valley
McEnery Convention Center, San Jose, April 26 - 29, 2010
Conference: April 26 - 29, 2010
Expo: April 27 – 29, 2010

Register Today.
www. embedded.com/sv

ESC
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I
n this column, profiles are given for 
the IEEE Signal Processing Society’s 
(SPS’s) 2010 class of Distinguished 
Lecturers, the 2010 SPS Fellows are 
introduced, award recipients are 

announced, and nominations are sought 
for directors-at-large and Board of 
Governors members-at-large.

2010 CLASS OF 
DISTINGUISHED LECTURERS
The SPS’s Distinguished Lecturer Program 
provides the means for Chapters to have 
access to well-known educators and 
authors in the fields of signal processing to 
lecture at Chapter meetings. Chapters 
interested in arranging lectures by the 
Distinguished Lecturers can obtain infor-
mation from the Society’s Web page (http://
www. signalprocessingsociety.org/lecturers/
distinguished-lecturers/) or by sending an 
e-mail to sp.info@ieee.org.

Candidates for the Distinguished 
Lecturer Program are solicited from the 
Society Technical Committees, Editorial 
Boards, and Chapters by the Awards Board. 
The Awards Board vets the nominations, 
and the Board of Governors approves the 
final selection. Distinguished Lecturers are 
appointed for a term of two calendar years. 

2010 DISTINGUISHED LECTURERS

SHEILA S. HEMAMI
Sheila S. Hemami received the B.S.E.E. 
degree from the University of Michigan in 
1990 and the M.S.E.E. and Ph.D. degrees 
from Stanford University in 1992 and 1994, 
respectively. Her Ph.D. thesis was 
“Reconstruction of Compressed Images and 
Video for Lossy Packet Networks,” and she 
was one of the first researchers to work on 
what we now call error concealment. In 

1994, she was with Hewlett-Packard 
Laboratories, Palo Alto, California. She joined 
the School of Electrical Engineering at 
Cornell University in 1995, where she is a 
professor and directs the Visual Comm-
unications Laboratory. 

Dr. Hemami’s research interests broadly 
concern communication of visual informa-
tion, both from a signal processing per-
spective (signal representation, source 
coding, and related issues) and from a psy-
chophysical perspective.

Dr. Hemami is an IEEE Fellow and has 
held various visiting positions, most 
recently at the University of Nantes, 
France, and Ecole Polytechnique Federale 
de Lausanne, Switzerland. She has received 
numerous college and national teaching 
awards, including Eta Kappa Nu’s C. 
Holmes MacDonald Award. She is editor-
in-chief of IEEE Transactions on 
Multimedia (2008–2010); member-at-large 
of the SPS Board of Governors (2009–
2011), and an SPS Distinguished Lecturer 
(2010–2011). She chaired the IEEE Image 
and Multidimensional Signal Processing 
Technical Committee (2006–2007) and 
was associate editor for IEEE Transactions 
on Signal Processing (2000–2006). 

Dr. Hemami’s lecture topics include 
the following:

“From Single Media to Multimedia— ■

Perception, Coding, and Quality”
“A Signal-Processing Approach to  ■

Modeling Vision and Applications”
“Task-Based Imaging—Image  ■

Usefulness and Its Relationship to 
Image Quality.”

SHRIKANTH NARAYANAN
Shrikanth Narayanan received his M.S., 
Engineer, and Ph.D. degrees in electrical 
engineering, from the University of 
California, Los Angeles, in 1990, 1992, and 
1995, respectively. He is the Andrew J. 

Viterbi Professor of Engineering at the 
University of Southern California (USC), 
where he has been since 2000, and professor 
in the Signal and Image Processing Institute 
of USC’s Electrical Engineering Department. 
He also holds joint appointments as profes-
sor in computer science, linguistics and psy-
chology. From 1995 to 2000, he was with 
AT&T, first as a senior member and later as a 
principal member of its technical staff. 

Dr. Narayanan is editor, Computer, Speech 
and Language Journal, and associate editor, 
IEEE Transactions on Multimedia (2009) 
and the Journal of Acoustical Society of 
America. He was also associate editor, IEEE 
Transactions of Speech and Audio Processing
(2000–2004) and IEEE Signal Processing 
Magazine (2005–2008). He is on the Speech 
Communication and Acoustic Standards 
Committees of the Acoustical Society of 
America and the Advisory Council of the 
International Speech Communication 
Association. He served on the SPS Speech 
Processing Technical Committee (2003–2007) 
and the SPS Multimedia Signal Processing 
Technical Committee (2005–2008). 

He is an IEEE Fellow; fellow, Acoustical 
Society of America; and member, Tau Beta 
Pi, Phi Kappa Phi, and Eta Kappa Nu. He is 
the recipient of an NSF CAREER Award, 
USC Engineering Junior Research Award, 
USC Electrical Engineering Northrop-
Grumman Research Award, Mellon Award 
for Mentoring Excellence, Okawa Research 
Award, IBM Faculty Award, and a faculty fel-
lowship from the USC Center for interdisci-
plinary research. He received the 2005 SPS 
Best Paper Award. Papers coauthored with 
his students have won awards at InterSpeech 
2009 Emotion Challenge, IEEE DCOSS 
2009, IEEE MMSP 2007, IEEE MMSP 2006, 
ICASSP 2005, and ICSLP 2002. 

His research interests are in signals and 
systems modeling with an interdisciplinary 
emphasis on speech, audio, language; 
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Advanced Signal Integrity  
for High-Speed Digital Designs
Stephen H. Hall, Howard L. Heck

 
Wiley-IEEE Press

This book is designed to provide 
contemporary readers with an 
understanding of the emerging 
high-speed signal integrity 
issues that are creating 
roadblocks in digital design. 
Written by the foremost experts 
on the subject, it leverages 
concepts and techniques from non-related 
fields such as applied physics and microwave 
engineering and applies them to high-speed digital 
design—creating the optimal combination between 
theory and practical applications. 

Bayesian Signal Processing: 
Classical, Modern and Particle 
Filtering Methods 

 
Wiley-IEEE Press

This text enables readers to fully 
exploit the many advantages 
of the “Bayesian approach” to 
model-based signal processing. 
It clearly demonstrates the 
features of this powerful 
approach compared to the pure 
statistical methods found in 
other texts. Readers will discover how easily 
and effectively the Bayesian approach, coupled with 
the hierarchy of physics-based models developed 
throughout, can be applied to signal processing 
problems that previously seemed unsolvable. 

Maxwell’s Equations 
Paul G. Huray 

Wiley-IEEE Press

Maxwell’s Equations is a 
practical guide to one of 
the most remarkable sets 
of equations ever devised. 
Professor Paul Huray presents 
techniques that show the 
reader how to obtain analytic 

equations for ideal materials and 
boundary conditions. These solutions are then used 
as a benchmark for solving real-world problems. 

Discover These New Titles from Wiley and Wiley-IEEE Press
The Foundations of Signal Integrity 
Paul G. Huray

Wiley-IEEE Press

The Foundations of Signal Integrity 
is the first of its kind—a reference 
that examines the physical 
foundation of system integrity 
based on electromagnetic theory 

Drawing upon the cutting-edge 
research of Professor Paul 

graduate students, it develops the physical theory 
of wave propagation using methods of solid state 
and high-energy physics, mathematics, chemistry, 
and electrical engineering before addressing its 
application to modern high-speed systems. 

Handbook on Array Processing  
and Sensor Networks 
Simon Haykin, K. J. Ray Liu 

Wiley-IEEE Press 

Featuring contributions by 
world-renowned experts in their 
fields, Handbook on Sensor 

tutorial articles on recent 
advancements and state-of-
the-art results by providing 
a comprehensive overview of 
sensor and array processing. This first published 
book on the subject covers fundamental principles 
as well as applications, making it a must have for 
researchers, professors, graduate students,  
and practitioners. 

Adaptive Signal Processing:  
Next Generation Solutions 

Wiley-IEEE Press

This book presents the latest research results 
in adaptive signal processing with an emphasis 
on important applications and theoretical 
advancements. Each chapter is self-contained, 
comprehensive in its coverage, and written by a 

style is maintained throughout the book and each 
chapter concludes with problems for readers to 
reinforce their understanding of the material 
presented. The book can be used as a reliable 
reference for researchers and practitioners or as a 
textbook for graduate students. 

Advanced Digital Signal Processing 
and Noise Reduction, 4th Edition 
Saeed V. Vaseghi 

Wiley

The fourth edition of Advanced 
Digital Signal Processing and 
Noise Reduction updates 
and extends the chapters 
in the previous edition and 
includes two new chapters on 

and Eigen analysis and 
independent component analysis. The wide 
range of topics covered in this book include Wiener 
filters, echo cancellation, channel equalisation, 
spectral estimation, detection and removal of 
impulsive and transient noise, interpolation of 
missing data segments, speech enhancement 
and noise/interference in mobile communication 
environments. This book provides a coherent 
and structured presentation of the theory and 
applications of statistical signal processing and 
noise reduction methods. 

Complex Valued Nonlinear Adaptive 
Filters: Noncircularity, Widely Linear 
and Neural Models 

 
Wiley

This book was written in 
response to the growing demand 
for a text that provides a 
unified treatment of linear 
and nonlinear complex valued 
adaptive filters, and methods 
for the processing of general 
complex signals (circular 
and noncircular). It brings together adaptive 
filtering algorithms for feedforward (transversal) 
and feedback architectures and the recent 
developments in the statistics of complex variable, 

calculus and augmented complex statistics. This 
offers a number of theoretical performance gains, 
which is illustrated on both stochastic gradient 
algorithms, such as the augmented complex least 

filters. This work is supported by a number of 
simulations using synthetic and real world data, 
including the noncircular and intermittent radar 
and wind signals. 
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 multimodal and biomedical problems; and 
applications with direct societal relevance. 
He has published over 350 papers and has 
seven granted and ten pending U.S. patents.

Dr. Narayanan’s lecture topics include 
the following:

Human-Centered Speech and Audio  ■

Processing
Expressive Human Communication:  ■

Automatic Recognition and Synthesis
Speech-to-Speech Translation: Advan- ■

ces, Challenges, and Opportunities
Speech Production: Data, Models  ■

and Technology Applications
Designing Multimodal Interfaces for  ■

Children
Multimodal Behavioral Signal  ■

Processing.

ANTONIO ORTEGA
Antonio Ortega received the telecommuni-
cations engineering degree, Universidad 
Politecnica de Madrid, Spain in 1989 and 
the Ph.D. in electrical engineering, 
Columbia University, New York, in 1994. 
In 1994, Dr. Ortega joined the Electrical 
Engineering-Systems Department, 
University of Southern California (USC), 
where he is currently a professor and asso-
ciate chair of Electrical Engineering 
Systems. He has served as director, Signal 
and Image Processing Institute at USC. 

He is an IEEE Fellow and a member of 
ACM. He has been chair and member, Image, 
Video, and Multidimensional Signal 
Processing Technical Committee (2004–
2005) and (2006-present), respectively; and 
member, SPS Board of Governors (2002). He 
has been Technical Program cochair of ICIP 
2008, MMSP 1998, and ICME 2002. He is as-
sociate editor, IEEE Transactions on Image 
Processing (2007–2010) and area editor (fea-
ture articles), IEEE Signal Processing 
Magazine (2009–present). He was also associ-
ate editor, IEEE Signal Processing Letters
(2001–2002) and EURASIP Journal on 
Advances in Signal Processing. He received 
the NSF CAREER Award, the IEEE 
Communications Society Leonard G. 
Abraham Prize Paper Award (1997), the IEEE 
Signal Processing Society Magazine Award 
(1999), and the EURASIP Journal of Advances 
in Signal Processing Best Paper Award (2006).

His research interests are multimedia 
compression, communications, and signal 

analysis. His recent work is focusing on 
distributed compression, multiview coding, 
error tolerant compression, wavelet-based 
signal analysis, and information represen-
tation in wireless sensor networks. 

Dr. Ortega’s lecture topics include 
the following:

Practical Applications of Distributed  ■

Source Coding
Multiview Video: Coding Efficiency  ■

and Flexible Decoding
Wavelets on Graphs and Trees:  ■

Constructions and Applications
Seeing the Signals: Applying Signal  ■

Processing Tools to Real World Data 
Analysis Problems.

VENUGOPAL V. VEERAVALLI
Venugopal V. Veeravalli received the Ph.D. 
degree from the University of Illinois at 
Urbana-Champaign (1992), the M.S. degree 
from Carnegie-Mellon University, 
Pittsburgh, Pennsylvania (1987), and the 
B.Tech. degree from the Indian Institute of 
Technology, Bombay (1985), all in electrical 
engineering. He joined the University of 
Illinois at Urbana-Champaign in 2000, 
where he is currently professor, Department 
of Electrical and Computer Engineering, 
and research professor, Coordinated Science 
Laboratory. He is also director, Illinois 
Center for Wireless Systems (ICWS). He 
was program director for Communications 
Research, U.S. National Science Foundation 
in Arlington, Virginia (2003–2005). He has 
held academic positions at Harvard 
University, Rice University, and Cornell 
University and has been on sabbatical at 
MIT, IISc Bangalore, and Qualcomm, Inc.

His research interests include distributed 
sensor systems and networks, wireless com-
munications, detection and estimation theo-
ry, and information theory. He is an IEEE 
Fellow. He was on the Board of Governors of 
the IEEE Information Theory Society (2004–
2007) and associate editor of IEEE 
Transactions on Information Theory (2000–
2003) and IEEE Transactions on Wireless 
Communications (1999–2000). He is on the 
editorial boards of Communications in 
Information and Systems and Journal of 
Statistical Theory and Practice.

He received the IEEE Browder J. 
Thompson Best Paper Award (1996); the 
National Science Foundation CAREER 

Award (1998); the Presidential Early Career 
Award for Scientists and Engineers 
(PECASE) (1999); the Michael Tien 
Excellence in Teaching Award from the 
College of Engineering, Cornell University 
(1999); and the Xerox Award for faculty re-
search from the College of Engineering, 
University of Illinois (2003).

Dr. Veeravalli’s lecture topics include 
the following:

Quickest Change Detection with  ■

Distr ibuted Sensors  and I ts 
Applications

Smart Sleeping Policies for Inference  ■

in Sensor Networks
Distributed Regression and  ■

Estimation in Sensor Networks
Dynamic Spectrum Access with  ■

Learning for Cognitive Radio
Interference Management in  ■

Wireless Networks.

ABDELHAK M. ZOUBIR
Abdelhak M. Zoubir received his Dr.-Ing. 
from Ruhr-Universität Bochum, Germany, 
in 1992. He was associate professor, 
Queensland University of Technology, 
Australia  (1992–1998); professor of telecom-
munications, Curtin University of 
Technology, Australia (1999); interim head, 
School of Electrical and Computer 
Engineering (2001–2003); professor and head 
of the Signal Processing Group, Technische 
Universität Darmstadt, Germany (2003). 

His research interests are statistical 
methods for signal processing with empha-
sis on bootstrap techniques, robust detec-
tion and estimation and array processing 
applied to telecommunications, radar, 
sonar, car engine monitoring, and biomed-
icine. He published over 300 journal and 
conference papers on these areas. He coau-
thored Bootstrap Techniques for Signal 
Processing (Cambridge University Press, 
2004), and he was a guest editor of a special 
issue on the bootstrap and its applications 
in IEEE Signal Processing Magazine
(2007). He coauthored the paper “Detection 
of Sources Using Bootstrap Techniques,” 
which received the 2003 IEEE SPS Young 
Author Best Paper Award.

He was deputy technical chair (plenary 
and special sessions), IEEE International 
Conference on Acoustics, Speech, and Signal 
Processing (ICASSP 1994); technical chair, 
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IEEE Workshop on Statistical Signal 
Processing (SSP 2001); general cochair, 
IEEE International Symposium on Signal 
Processing & Information Technology 
(ISSPIT 2003); and general cochair, IEEE 
Workshop on Sensor Array and Multichannel 
Signal Processing (SAM 2008). He was the 
plenary sessions cochair, ICASSP 2008. He 
was associate editor, IEEE Transactions on 
Signal Processing (1999–2005), and he is on 
the editorial boards of Signal Processing and 
the Journal on Advances in Signal 
Processing. He has been an editorial board 
member, IEEE Journal on Selected Topics 
in Signal Processing (2009); member, Signal 
Processing Theory and Methods Technical 
Committee (2002); vice-chair (2008–2009); 
and chair (2010–2011); member, Sensor 
Array and Multichannel Signal Processing 
Technical Committee (2007–present); mem-
ber, Signal Processing Education Technical 
Committee (2006–2008); and an elected 
member, AdCom for the European 
Association for Signal and Image Processing.

Dr. Zoubir’s lecture topics include 
the following:

Source Separation for Nonstationary  ■

Signals
The Bootstrap Paradigm in Signal  ■

Processing: Estimation, Detection, and 
Model Selection

Robust Statistics for Parameter  ■

Estimation and Signal Detection
Signal Processing for Automotive  ■

Monitoring.

38 SPS MEMBERS 
ELEVATED TO FELLOW
Each year, the IEEE Board of Directors con-
fers the grade of Fellow on up to one-tenth 
percent of the members. To be considered, an 
individual must have been a Member, nor-
mally for five years or more, and a Senior 
Member at the time for nomination to Fellow. 
The grade of Fellow recognizes unusual dis-
tinction in IEEE’s designated fields.

The SPS congratulates these 38 SPS 
members who were recognized with the 
grade of Fellow as of 1 January 2010.

Martin J. Bastiaans, Eindhoven, The 
Netherlands: For contributions to signal 
processing for optical signals and systems.

Lorenzo Bruzzone, Trento, Italy: For 
contributions to pattern recognition and 
image processing for remote sensing.

Ahmet Enis Cetin, Ankara, MN, Turkey: 
For contributions to signal recovery and 
image analysis algorithms.

Laurent Cohen, Neuilly-Sur-Seine, 
France: For contributions to computer 
vision technology for medical imaging.

David Daniels, Leatherhead, Surrey, 
United Kingdom: For contributions to 
ground-penetrating radar.

Michel Defrise, Brussels, Belgium: For 
contributions to computer tomography.

Ray Dolby, San Francisco, California: 
For leadership in developing and com-
mercializing practical noise reduction 
technology.

Hesham M. El-Gamal, Columbus, 
Ohio: For contributions to multiple-input 
multiple-output and cooperative commu-
nications.

Mário Alexandre Teles Figueiredo,
Lisboa, Portugal: For contributions to pat-
tern recognition and computer vision.

Daniel R. Fuhrmann, Houghton, 
Michigan: For contributions to adaptive 
radar signal processing.

Marc Hillel Goldburg, Redwood City, 
California: For leadership in the develop-
ment and commercialization of spectrally 
efficient wireless communications systems.

Matti A. Karjalainen, Espoo, Finland: 
For contributions to perceptual audio sig-
nal modeling and processing.

Bart Kosko, Los Angeles, California: For 
contributions to neural and fuzzy systems.

B.V.K. Vijaya Kumar, Pittsburgh, 
Pennsylvania: For contributions to biomet-
ric recognition methods.

Andrew Francis Laine, New York: For con-
tributions to wavelet applications in digital 
mammography and ultrasound image analysis.

Seong-Whan Lee, Seoul, Korea: For 
contributions to pattern recognition for 
biometrics and document image analysis.

Peyman Milanfar, Santa Cruz, 
California: For contributions to inverse 
problems and super-resolution in imaging.

Randolph Lyle Moses, Columbus, Ohio: 
For contributions to statistical signal pro-
cessing.

Aria Nosratinia, Richardson, Texas: For 
contributions to multimedia and wireless 
communications.

Robert Nowak, Madison, Wisconsin: 
For contributions to statistical signal and 
image processing.

Roberto Pieraccini, New York: For con-
tributions to statistical natural language 
understanding and spoken dialog manage-
ment and learning.

Douglas A. Reynolds, Lexington, 
Massachusetts: For contributions to 
Gaussian-mixture-model techniques for 
automatic speaker recognition.

Giuseppe Riccardi, Povo-Trento, Italy: 
For contributions to algorithms for auto-
matic speech recognition and spoken lan-
guage processing.

Yong Rui, Beijing, China: For contribu-
tions to image and video analysis, indexing, 
and retrieval.

Motoyuki Sato, Sendai, Miyagi-ken, 
Japan: For contributions to radar remote 
sensing technologies in environmental and 
humanitarian applications.

Mihaela Schaar,  Los Angeles, 
California: For contributions to multime-
dia compression and communications.

Robert Schober, Vancouver, BC, 
Canada: For contributions to wireless com-
munications.

Dan Schonfeld, Glenview, Illinois: For 
contributions to image and video analysis.

Andrew C. Singer, Urbana, Illinois: For 
contributions to signal processing tech-
niques for digital communication.

Malcolm Graham Slaney, Palo Alto, 
California: For contributions to percep-
tual signal processing and tomographic 
imaging.

Frank K. Soong, Beijing, China: For 
contributions to speech processing.

M i l i c a  S t o j a n o v i c ,  B o s t o n , 
Massachusetts: For contributions to under-
water acoustic communications.

Daniel Trudnowski, Butte, Montana: 
For contributions to algorithms for char-
acterizing power-system small-signal sta-
bility properties.

Vishu R. Viswanathan, Plano, Texas: For 
contributions to speech coding and synthe-
sis and objective speech quality evaluation.

Howard C. Yang, Shanghai, China: For 
leadership in mixed-signal integrated cir-
cuit design and manufacturing.

Feng Zhao, Issaquah, Washington: For 
contributions to networked embedded 
computing and sensor networks.

Wenwu Zhu, Beijing, China: For con-
tributions to video communications over 
the internet and wireless.
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Xinhua Zhuang, Columbia, Missouri: 
For contributions made to digital image 
processing, image coding, and computer 
vision.

The following individual was evaluated 
by the SPS, but is not an SPS member: 

Alevoor Ravishankar Rao, Yorktown 
Heights, New York: For contributions to 
understanding of image texture and appli-
cations to machine vision solutions.

CALL FOR NOMINATIONS: 
REGIONAL DIRECTORS-AT-LARGE 
AND BOARD OF GOVERNORS 
MEMBERS-AT-LARGE
In accordance with the SPS Bylaws, the 
membership will elect, by direct ballot, 
three members-at-large to the Board of 
Governors for three-year terms commenc-
ing 1 January 2011 and ending 31 
December 2013, as well as one regional 
director-at-large for the corresponding 
regions: Regions 1–6 (U.S.), Regions 7 and 
9 (Canada and Latin America), Region 8 
(Europe/Middle East/Africa) and Region 10 
(Asia/Pacific Rim) for two-year terms com-
mencing 1 January 2011 and ending 31 
December 2012.

Regional directors-at-large are elected 
locally by members of the corresponding 
region. They serve as nonvoting members 
of the Board of Governors and voting 
members of the Membership Board. They 
promote and foster local activities and 
encourage new chapter development; rep-
resent their regions to the core of SPS; 
offer advice to improve membership rela-
tions, provide recruiting and service to 
their regions; guide and work with their 
corresponding chapters to serve their 
members; and assist the vice president-
Awards in conducting chapter reviews.

Board of Governors members-at-large 
are directly elected by the Society’s mem-
bership to represent the member view-
point in Board decision making. They 
typically review, discuss, and act upon a 
wide range of items affecting the actions, 
activities, and health of the Society. 

José M.F. Moura, SPS past president 
and chair of the Nominations and 
Appointments (N&A) Committee, has pro-
vided the following formal procedures for 
the SPS’s 2010 regional directors-at-large 
and BoG members-at-large elections.

Publication of a call for nominations  ■

for positions of BoG members-at-large 
and regional directors-at-large.  
Nominees must hold SPS Member 
grade (IEEE Member grade or higher 
and Member of SPS) to hold elective 
office (March).

From the responses received, a list of  ■

candidates will be assembled for each 
election by the past president for presen-
tation to the N&A Committee (April).

The N&A Committee ballots to cre- ■

ate a short list of at least six candidates 
(by bylaw, at least two candidates must 
be submitted for each BoG member-at-
large position becoming vacant) (April–
May). Currently, there is no minimum 
number of candidates required for the 
regional directors-at-large race. 
Nevertheless, the Society has a stated 
preference for contested elections, so 
more than one nomination per race 
is desirable.

After the N&A ranking ballot, the  ■

top candidates who are willing and able 
to serve for director-at-large and mem-
ber-at-large are advanced for ballot to 
the SPS’s voting members (July).

Collection and tabulation of returned  ■

ballots will again be handled by the 
IEEE Technical Activities Society 
Services Department on behalf of the 
SPS (July–September).

The three candidates receiving the  ■

highest number of votes who confirm 
their ability to serve will be declared 
elected members-at-large to the Board 
of Governors with three-year terms 
commencing 1 January 2011 and one 
candidate from each specified region 
receiving the highest number of votes 
who confirm their ability to serve will 
be declared elected a regional director-
at-large with a two-year term com-
mencing 1 January 2011 (September).
Please provide nominations for regional 

director-at-large and member-at-large to 
Past President José M.F. Moura via e-mail 
to t.argiropoulos@ieee.org or via fax to +1 
732 235 1627. Please provide the name, 
address, phone, fax, e-mail, or other con-
tact information of the nominee, along 
with a brief background on the individual 
(no more than 100 words, please) and any 
information about the individual’s current 

activities in the SPS, IEEE, or other pro-
fessional societies.

2009 IEEE SPS AWARDS 
PRESENTED IN DALLAS, TEXAS
The IEEE SPS congratulates the SPS 
members who received the Society’s pres-
tigious awards during ICASSP 2010 in 
Dallas, Texas.

The Society Award honors outstanding 
technical contributions in a field within 
the scope of the IEEE SPS and outstand-
ing leadership in that field. The Society 
Award comprises a plaque, a certificate, 
and a monetary award of US$2,500. It is 
the highest-level award bestowed by the 
IEEE SPS. This year’s recipient was Rama 
Chellappa “for pioneering and fundamen-
tal contributions to image and video-
based analysis and understanding.” 

The IEEE Signal Processing Magazine 
Best Paper Award honors the author(s) of 
an article of exceptional merit and broad 
interest on a subject related to the Society’s 
technical scope and appearing in the 
Society’s magazine. The prize comprises 
US$500 per author (up to a maximum of 
US$1,500 per award) and a certificate. If 
there are more than three authors, the 
maximum prize shall be divided equally 
among all authors and each shall receive a 
certificate. The 2009 IEEE Signal 
Processing Magazine Best Paper Award 
recipients are Neal Patwari, Joshua N. Ash, 
Spyros Kyperountas, Alfred O. Hero, III, 
Randolph L. Moses, and Neiyer S. Correal, 
for the article “Locating the Nodes: 
Cooperative Localization in Wireless 
Sensor Networks,” IEEE Signal Processing 
Magazine, vol. 22, no. 4, July 2005.

The IEEE Signal Processing Magazine 
Best Column Award honors the author(s) 
of a column of exceptional merit and broad 
interest on a subject related to the Society’s 
technical scope and appearing in the 
Society’s magazine. The prize shall consist 
of US$500 per author (up to a maximum 
of US$1,500 per award) and a certificate. If 
there are more than three authors, the 
maximum prize shall be divided equally 
among all authors and each shall receive a 
certificate. This year’s IEEE Signal 
Processing Magazine Best Column Award 
recipient is Richard G. Baraniuk, for the 
article “Compressive Sensing [Lecture 
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Notes],” in IEEE Signal Processing 
Magazine, vol. 24, no. 4, July 2007.

Two Technical Achievement Awards 
were presented this year. Alan S. Willsky 
received the award “for originality and 
innovation in stochastic multiresolution 
modeling in statistical and graphical mod-
eling, and in probabilistic control-driven 
signal processing.” K.J. Ray Liu was recog-
nized “for pioneering and outstanding 
contributions for the advances of signal 
processing in multimedia forensics, secu-
rity, and wireless communications.” The 
Technical Achievement Award honors a 
person who, over a period of years, has 
made outstanding technical contributions 
to the theory and/or practice in technical 
areas within the scope of the Society, as 
demonstrated by publications, patents, or 
recognized impact on this field. The prize 
is a monetary award of US$1,500, a plaque, 
and a certificate.

The Meritorious Service Award was 
presented this year to Arye Nehorai “for 
exceptional and dedicated service as a 
leader in a broad range of activities for the 
Society and profession” and to Isabel 
Maria Martins Trancoso “for outstanding 
service and leadership to the worldwide 
community in the field of speech process-
ing.” The award comprises a plaque and a 
certificate; judging is based on dedication, 
effort, and contributions to the Society.

The SPS Education Award honors edu-
cators who have made pioneering and sig-
nificant contributions to signal processing 
education. Judging is based on a career of 
meritorious achievement in signal pro-
cessing education as exemplified by writ-
ing of scholarly books and texts, course 
materials, and papers on education; inspi-
rational and innovative teaching; and cre-
ativity in the development of new curricula 
and methodology. The award comprises a 
plaque, a monetary award of US$1,500, 
and a certificate. The recipient of the SPS 
Education Award is Robert M. Gray “for 
outstanding contributions to education 
and mentoring in signal processing.”

Six Best Paper Awards were awarded, 
honoring the author(s) of a paper of 
exceptional merit dealing with a subject 
related to the Society’s technical scope, 
and appearing in one of the Society’s 
transactions, irrespective of the author’s 

age. The prize is US$500 per author (up 
to a maximum of US$1,500 per award), 
and a certificate. Eligibility is based on a 
five-year window preceding the year of 
election, and judging is based on general 
quality, originality, subject matter, and 
timeliness. Up to six Best Paper Awards 
may be presented each year. This year, the 
awardees were:

Zhou Wang, Alan Conrad Bovik,  ■

Hamid Rahim Sheikh, and Eero P. 
Simoncelli, “Image Quality Assess ment: 
From Error Visibility to Structural 
Similarity,” IEEE Transac tions on Image 
Processing, vol. 13, no. 4, Apr. 2004.

Zhi-Quan (Tom) Luo and Shuzhong  ■

Zhang, “Dynamic Spectrum Manage-
ment: Complexity and Duality,” IEEE 
Journal of Selected Topics in Signal 
Processing, vol. 2, no. 1, Feb. 2008.

Quentin H. Spencer, A. Lee  ■

Swindlehurst, and Martin Haardt, 
“Zero-Forcing Methods for Downlink 
Spatial Multiplexing in Multiuser 
MIMO Channels,” IEEE Transactions 
on Signal Processing, vol. 52, no. 2, 
Feb. 2004.

Chul Min Lee and Shrikanth S.  ■

Narayanan, “Toward Detecting 
Emotions in Spoken Dialogs,” IEEE
Transactions on Speech and Audio 
Processing, vol. 13, no. 2, Mar. 2005.

Jan Lukáš, Jessica Fridrich, and  ■

Miroslav Goljan, “Digital Camera 
Identification from Sensor Pattern 
Noise,” IEEE Transactions on Informa-
tion Forensics and Security, vol. 1, no. 
2, June 2006.

Genyuan Wang and Moeness G.  ■

Amin, “Imaging Through Unknown 
Walls Using Different Standoff 
Distances,” IEEE Transactions on 
Signal Processing, vol. 54, no. 10, 
Oct. 2006.
The Young Author Best Paper Award 

honors the author(s) of an especially meri-
torious paper dealing with a subject 
related to the Society’s technical scope 
and appearing in one of the Society’s 
transactions and who, upon date of sub-
mission of the paper, is less than 30 years 
of age. Eligibility is based on a three-year 
window preceding the year of election, 
and judging is based on general quality, 
originality, subject matter, and timeliness. 

Two Young Author Best Paper Awards 
were presented this year: 

Tomoki Toda, for the paper coau- ■

thored with Alan W. Black and Keiichi 
Tokuda, “Voice Conversion Based on 
Maximum-Likelihood Estimation of 
Spectral Parameter Trajectory,” IEEE 
Transactions on Audio, Speech, and 
Language Processing, vol. 15, no. 8, 
November 2007.

Florian Luisier, for the paper coau- ■

thored with Thierry Blu and Michael 
Unser, “A New SURE Approach to 
Image Denoising: Interscale Orthonor-
mal Wavelet Thresholding,” IEEE 
Transactions on Image Processing,
vol. 16, no. 3, March 2007.

SPS MEMBERS 
RECEIVE IEEE AWARDS
Ronald Schafer has been selected as the 
IEEE Jack S. Kilby Signal Processing 
Medal recipient “for leadership and pio-
neering contributions to the field of digi-
tal signal processing.” The medal will be 
presented to Prof. Schafer at the IEEE 
Honors Ceremonies. 

The James L. Flanagan Speech and 
Audio Processing Technical Field Award
will be presented to Prof. Sadaoki Furui  
“for contributions to and leadership in 
the field of speech and speaker recogni-
tion towards natural communication 
between humans and machines.” This 
award was founded and is sponsored by 
the IEEE SPS.  

The IEEE Alexander Graham Bell 
Medal will be presented to Prof. John M. 
Cioffi “for pioneering discrete multitone 
modem technology as the foundation of 
the global DSL industry.”

The IEEE Edison Medal will be pre-
sented to Prof. Ray Dolby “for leader-
ship and pioneering applications in 
audio recording and playback equip-
ment for both professional and con-
sumer electronics.”

The IEEE Dennis J. Picard Medal for 
Radar Technologies and Applications
will be presented to Prof. Alfonso Farina 
“for continuous, innovative, theoretical 
and practical contributions to radar 
systems and adaptive signal process-
ing techniques.”

[SP]
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[spotlight REPORT]

 Digital Object Identifier 10.1109/MSP.2009.935382

SETI–Are We (Still) Alone?

I
t’s an age-old question: Are we alone 
in the universe?

The fact is, we still don’t know—
for sure. But that hasn’t stopped us 
from looking. And we’re looking 

harder than ever.
Movies like The Day the Earth Stood 

Still (1951), Close Encounters (1977), and 
more recently District 9, which has been 
described in reviews as a social satire about 
a spacecraft that stalls over Johannesburg, 
have all been box office hits—a pretty 
strong indication what we all still want to 
know: Is anyone else out there?

Be assured that a lot of highly qualified 
people are still trying to find out.

“When we do radio search for extra-
terrestrial intelligence (SETI), what 
we’re looking for is a narrowband signal 
with one spot on the radio dial. That’s 
been true ever since Frank Drake—since 
that first experiment in 1960,” says Seth 
Shostak, senior astronomer for the SETI 
Institute, based in Mountain View, 
California. That’s the kind of signal 
where you pump all of your transmitter 
power into 1 Hz on the dial. “That’s what 
we traditionally look for,” says Shostak.

The way to find those, he says, is the 
incoming cosmic static to your antenna. 
“It’s just Fourier-transformed and you look 
for a whole bunch of energy, a whole bunch 
of power. It’s the kind of signal that’s non-
natural. We get a lot of radio static from 
the cosmos—quasars, pulsars, hot gas, 
cold gas, even Saturn and Jupiter and the 
Sun; they all make a lot of radio noise. But 
it’s not narrowband. So, it would easily be 
distinguished from the natural static.”

DRAKE’S EQUATION
Dr. Frank Drake (formerly the board chair 
of the SETI Institute, and still involved in 

SETI activities) was a young astronomer 
working at the National Radio Astronomy 
Observatory in Green Bank, Virginia, when 
he estimated the number of technical civi-
lizations that may exist in the galaxy. It 
quickly became known as the Drake equa-
tion, and identifies specific factors thought 
to play a role in the development of these 
civilizations although, after years of 
searching, some SETI scientists aren’t as 
comfortable with Drake’s thinking as they 
used to be. The equation, first presented 
by Drake in 1961, was originally written as 
N 5 R* . fp . ne . fl . fi . fc . L, where

N ■ 5 is the number of civilizations in 
the Milky Way Galaxy whose electro-
magnetic emissions are detectable.

R* is the rate of formation of stars  ■

suitable for the development of intelli-
gent life.

fp is the fraction of those stars with  ■

planetary systems.
ne equals the number of planets, per  ■

solar system, with an environment 
suitable for life.

fl is the fraction of life-bearing plan- ■

ets on which intelligent life emerges.

fi equals the fraction of life-bearing  ■

planets on which intelligent life emerges.
fc is the fraction of civilizations that  ■

develop a technology that releases 
detectable signs of their existence 
into space.

L is the length of time such civili- ■

zations release detectable signals 
into space.

A NEW TELESCOPE ARRAY
A lot has changed since 1961. In early 
2007, the SETI Institute and the 
University of California (UC)-Berkeley, 
which works closely with the institute and 
has its own major SETI program, activat-
ed an entirely new system for searching 
for extraterrestrial intelligence, the Allen 
telescope array (ATA) (see Figure 1).

The ATA is a network of 42 6-m diame-
ter, mass-produced radio dishes, but the 
plan is to increase the array to 350 tele-
scopes over the next three years. That is, if 
the institute and UC-Berkeley can get 
them funded.

The total cost of the project to date, 
including research, development, and 

[FIG1] The ATA, activated in October 2007, is a joint project of UC-Berkeley and the SETI 
Institute. Currently made up of 42 radio dishes, the system is expected to grow to 350 
dishes to advance the search for extraterrestrial life and radio astronomy research. 
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 construction of the array and 
the necessary radio astron-
omy and SETI signal detec-
tors, was US$50 million. 
About half of that seed money 
was donated by Microsoft 
Cofounder Paul G. Allen. 
Additional funding has come 
from the SETI Institute, 
UC-Berkeley, the National 
Science Foundation, former 
Microsoft chief scientist 
Nathan Myhrvold,  Greg 
Papadopoulos, Xilinx, and 
other corporations and indi-
vidual donors.

Completing the array is 
expected to cost about another 
US$40 million. Although dona-
tions are welcome, the SETI Institute and 
UC-Berkeley hope to speed up the comple-
tion process with a proposal that they sub-
mitted to the National Science Foundation 
in August 2009, which would double the 
size of the ATA.

While still somewhat limited in sensi-
tivity, a fully developed ATA would signifi-
cantly expand the radio frequency band 
for conducting the search, and could 
detect fainter and more distant signals 
with more telescopes. At 4.5 octaves of fre-
quency, it already can collect a fairly large 
amount of data.

The current array of 42 dishes is spread 
out over an area of about a half a kilome-
ter. Located near the town of Hat Creek, 
just north of Lassen Volcanic National 
Park in northern California, the dishes 
working together can take in five square 
degrees of sky at a time—a box as wide as 
ten full moons. For SETI, in  particular, 
this means that over the next few dozen 
years, the ATA will get a thousand times 
more data than has been accumulated in 
the past 45 years (see Figure 2).

“What you need to do,” says Shostak, 
“is to cross-correlate the antennas. They’re 
putting out streams of bits and you want 
to correlate them. You want to multiply a 
string of bits from one antenna against 
another and that means you can’t have 
them very far apart.” (See Figure 3.)

Unlike previous telescopes used in 
SETI programs, the ATA has several 
features designed specifically for the 

SETI mission, including one that filters 
out noise from man-made interference 
that in many radio telescopes would 
render much of the data unusable.

What ATA managers didn’t anticipate 
was interest from the U.S. Air Force 
Space Command (AFSC), which sees the 
array as a way to expand its space sur-
veillance capability. “The Air Force is 
interested in the technology, not the 
aliens,” notes Shostak, and that essen-
tially means adopting the additional sen-
sors provided by the ATA to observe 
orbiting objects during the day. Because 

its electro-optical sensors are 
affected by light pollution 
during the day, limiting 
observations that can be con-
ducted at that time, most of 
the ATA’s primary mission is 
conducted at night. This gives 
the array its best pointing sta-
bility and avoids a decrease in 
strength of narrowband sig-
nals that comes from scatter-
ing by the solar wind. 

Initial tests run by the Air 
Force suggests the ATA could 
track transmitting communi-
cation satellites in low- and 
medium-Earth orbits and, 
most promising, in geosyn-
chronous orbit, home to the 

most costly and highly utilized satellites 
that orbit Earth. If demonstrations are 
successful, the AFSC says the ATA may 
prove to be a viable all-weather, day and 
night contributor to its space surveil-
lance network. 

WHO ELSE IS LOOKING?
The UC-Berkeley search, called the 
Search for Extraterrestrial Radio 
Emissions from Nearby Developed 
Intelligent Populations (SERENDIP), is 
run out of the Arecibo Observatory in 
Puerto Rico, which in the past has been 
used part-time by the SETI Institute. 
Other long-time programs include the 
Planetary Society, an independent, pri-
vately funded organization, which oper-
ates Project BETA at Harvard Uni versity 
as well as in Argentina. Ohio State 
University has been conducting a full-
time search for years with a large volun-
teer staff. Other much smaller and 
private SETI programs are underway in 
Italy and Australia, although they’re not 
believed to be well funded.

Shostak says one of the most interest-
ing SETI data-processing developments in 
the last few years is a suggested replace-
ment for the Fourier transform currently 
used to analyze radio spectra with the 
Koenen-Loeuve transform, a concept being 
promoted in Italy that theoretically could 
simultaneously tap into both narrow and 
broadband (including spread-spectrum) 
signals. Italy is an active member of the 

[FIG3] Seth Shostak, a senior astronomer 
with the Mountain View, California-based 
SETI Institute, says he expects the ATA 
(named after Paul Allen, the cofounder of 
Microsoft) to produce a thousand times 
more data over the next  few dozen years 
than has been accumulated in the past 
45 years. 

[FIG2] This log periodic dual polarization feed covers 0.5–11.2 GHz. 
Each of the feeds from the 42 telescopes in the array outputs an 
equivalent of 200 GB/s.
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[spotlight REPORT] continued

International Academy of Astronautics’ 
SETI Per manent Study Group.

Australia’s Commonwealth Scientific 
and Industrial Research Organization 
commissioned the Parkes Observatory 
in the 1970s and has become legend-
ary in astronomical circles for its stud-
ies of radio galaxies, quasars, pulsars, 
and the Milky Way’s nearest galactic 
neighbors, the Magellanic Clouds. At 
one point in the mid-1990s, the SETI 
Institute had 24 active, funded proj-
ects going at Parkes with a staff of 80 
people, but using the 64-m Parkes 
telescope for SETI activity is very low 
key at this point. An Australian SETI 
team known as Southern SERENDIP 
is attempting to “piggyback” its 
search onto the Parkes Observatory’s 
much larger, more broad-based, astron-
omy program.

A SETI program is also just getting 
underway in Korea that piggybacks onto 
a radio astronomy experiment that’s run-
ning in that country. While they won’t 
have the luxury of pointing the telescope 
wherever they want, the Korean SETI 
scientists have access to the data gener-
ated by the telescope to look for SETI-
like signals.

TAKING SETI PERSONALLY
Another big SETI program, run by 
UC-Berkeley, is SETI@Home (see 
Figure 4).

Think of thousands of personal com-
puters (PCs) all over the world, all work-
ing simultaneously to 
analyze different parts of 
data col lected by the 
Arecibo telescope, which is 
the biggest single telescope 
on Earth.

Essentially, the SETI@
Home project borrows 
computer time from any-
one who volunteers for the 
program when they aren’t 
using their computers for 
other tasks. It does this 
with a screen saver that 
gets data from Berkeley 
over the Internet, analyzes 
that data, and then reports 
the results to Berkeley. The 

program is entirely voluntary. When 
you need your PC back, the Berkeley 
screen saver instantly shuts down and 
only continues its analysis when you’re 
not using your PC. SETI@Home con-
nects only when transferring data.

All of this is accomplished by break-
ing up the data into small pieces. Data 
is recorded on high-density tapes at 
Arecibo. Since Arecibo does not have a 
high bandwidth Internet connection, 
the data is sent to Berkeley very slowly 
where it is divided into 0.25-MB chunks 
(called “work units”). These are sent 
from the SETI@Home server over the 
Internet for analysis to people around 
the world.

UC Berkley keeps track of the work-
units with a large database. Its comput-
ers look for new work units to be 
processed and these are sent out and 
marked “in progress” in its database. If 
you can’t complete the work unit, or if 
your computer crashes and you lose 
your results, the data isn’t lost.

WHERE’S NASA?
Where does NASA fit into all of this 
activity? For all of its interest in finding 
some form of life in space (most recent-
ly searching for traces of water on Mars 
and by firing a rocket into a crater of 
the moon) NASA has been eliminated 
from any SETI-specific activities by an 
act of Congress.

NASA established SETI programs as 
early as the late 1970s that evolved into a 

fairly ambitious program known as the 
High-Resolution Microwave Survey 
(HRMS). That came to a halt in 1993 
when U.S. Senator Richard Bryan of 
Nevada, citing budget pressures, success-
fully introduced an amendment to a bill 
that eliminated all funding for the HRMS 
program. (HRMS amounted to less than 
0.1% of NASA’s annual budget.)

NASA does, however, support the 
SETI Institute’s much less publicized 
research in astrobiology, and its new 
US$600 million Kepler telescope 
could become an extremely important 
factor in the search for extraterres-
trial intelligence.

Launched in March 2009, Kepler is 
designed to survey the Milky Way galaxy 
to search for Earth-size and smaller 
planets and determine how many of the 
billions of stars in our galaxy have such 
planets. SETI scientists believe that 
Earth-size planets in our galaxy offer 
the best chance for finding intelligent 
life in space.

To conduct its search, the Kepler 
Mission uses a specially designed 
0.95-m diameter telescope that acts as a 
very sophisticated photometer to mea-
sure the size and orbit of every planet 
that passes in front of the more than 
100,000 stars located in what astrono-
mers believe is the most promising 
region of the Milky Way. Kepler has a 
very large field of view for an astronom-
ical telescope—105 square degrees, 
which is comparable to the area of a 

hand held at arm’s length. 
(The fields of view of most 
telescopes are less than one 
square degree.) Kepler 
needs that large a field to 
observe the large number 
of stars. It will look at the 
same star field for the 
entire mission and contin-
uously and simultaneously 
monitor the brightness of 
the stars for the life of the 
mission, which is three and 
a half years.

THE NEXT BIG THING
The next big thing in the 
SETI community, although 

[FIG4] This screensaver looks for specific pulse signals. It’s part of the 
SETI@HOME project that links thousands of PCs of volunteers all over the 
world, all working simultaneously to analyze different parts of data 
when SETI@HOME PCs are idle. Data from the program is collected by the 
Arecibo Observatory in Puerto Rico. 
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not designed specifically for searching for 
extraterrestrial civilizations, is a US$2 
billion project called the square kilome-
ter array (SKA). This is a huge interna-
tional effort to develop an aperture plane 
phased array with telescopes that can 
do many different  astronomical obser-
vations simultaneously—including 
SETI—with a million square meters of 
collecting area.

The SKA is still in the design stage, but 
testing is already underway of prototype 
telescopes and new signal processing 
devices that will be used for cross-correlat-
ing the SKA antennas. The array is 
expected to cover a frequency range of 
,0.1–,20 GHz, and involve at least two 
technologically different antenna concepts. 
When completed in the second half of the 
next decade, the SKA will be able to scan 
and map the sky with a sensitivity ,100 
times greater than is currently possible.

The project is partly funded by the 
European Community Sixth Framework 
Programme, with partners from 26 
institutes in 13 countries.

Participants in the program haven’t yet 
come up with the US$2 billion needed to 
complete the SKA, but Dan Werthimer, 
director of the SETI program at UC  
Berkeley, says Europeans, Australians, and 
South Africans have put US$100 million 
into the program. The U.S. effort, led by 
the National Science Foundation, has 
only advanced US$12 million at this 
point. Werthimer calls this “prototyping 
money,” which is being used primarily for 
technology development (see Figure 5).

With Arecibo doing a good job 
 covering the northern hemisphere, 
Werthimer says the SKA will be built 
either in Australia or South Africa—
first, to cover the southern hemisphere, 
but also to place the new telescope in a 
very quiet location. “Finding a quiet 
place is important, but we’re learning 
how to get rid of the radio frequency 
interference; it’s all about signal pro-
cessing.” (See Figure 6.)

Werthimer adds, “We’re doing a 
huge amount of work at Berkeley in col-
laboration with other groups trying to 
figure out how to build next-generation 
telescopes. Not just for SETI, but for 
other kinds of astronomy, too. And it’s 

dominated by signal processing. We 
expect to spend about US$300 million 
on signal processing [development] as 
part of this program.”

Werthimer also says the SKA team is 
working with several companies, most 

[FIG5] Dan Werthimer, director of the SETI program at UC-Berkeley, says his program 
SERENDIP is conducting a significant amount of work in collaboration with other interested 
groups in producing next-generation telescopes, with much of the focus on developing 
new techniques in signal processing. Arecibo is the world’s largest radio telescope and is 
located in Puerto Rico. The group expects to spend about US$300 million on signal-
processing development as part of its program. 

[FIG6] These ATA racks are part of the scalable DSP instrumentation that are based 
largely on general-purpose FPGA signal processing boards developed by the 
Collaboration for Astronomy Signal Processing and Electronics Research (CASPER). 
(More information can be found at http://casper.berkeley.edu.)

(continued on page 142)

________________
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Top Downloads in IEEE Xplore

T
his issue’s “Reader’s Choice” 
contains a list of articles 
published by the IEEE 
Signal Processing Society 
(SPS) that ranked among 

the top 100 most downloaded IEEE 
Xplore articles from May to October 
2009. The highest rank obtained by 
an article in this time frame is indicated 
in bold. Your suggestions and com-

ments are welcome and should be sent 
to Associate Editor Berna Erol at berna_
erol@yahoo.com.

[SP]

[reader’s CHOICE]

 Digital Object Identifier 10.1109/MSP.2009.935420

1053-5888/10/$26.00©2010IEEE

TITLE, AUTHOR, PUBLICATION YEAR
IEEE SPS JOURNALS ABSTRACT

RANK IN IEEE TOP 100 
(MAY–OCT 2009)

N TIMES 
IN TOP 
100 SINCE 
JAN 2006OCT SEP AUG JUL JUN MAY

COMPLEX WAVELET STRUCTURAL 
SIMILARITY: A NEW IMAGE 
SIMILARITY INDEX
Sampat, M.P.; Wang, Z.; Gupta, S.; 
Bovik, A.C.; Markey, M.K.
IEEE Transactions on Image Processing,
vol.18, no. 11, Nov. 2009, pp. 2385–2401

The article introduces a new measure of 
image similarity that is called the complex 
wavelet structural similarity (CW-SSIM) index 
and shows its applicability as a general 
purpose image similarity index.

7 1

A HISTOGRAM MODIFICATION FRAME-
WORK AND ITS APPLICATION FOR 
IMAGE CONTRAST ENHANCEMENT 
Arici, T.; Dikbas, S.; Altunbasak, Y. 
IEEE Transactions on Image Processing,
vol. 18, no. 9, Sep. 2009, pp. 1921–1935

The paper presents a general framework 
based on histogram equalization for image 
contrast enhancement, where contrast 
enhancement is posed as an optimization 
problem that minimizes a cost function.

15 14 4 3

FAST GRADIENT-BASED ALGORITHMS 
FOR CONSTRAINED TOTAL VARIATION 
IMAGE DENOISING AND DEBLURRING 
PROBLEMS
Beck, A.; Teboulle, M.
IEEE Transactions on Image Processing,
vol. 18, no. 11, Nov. 2009, pp. 2419–2434

This paper studies gradient-based schemes 
for image denoising and deblurring problems 
based on the discretized total variation (TV) 
minimization model with constraints.

16 1

FROM LAGRANGE TO SHANNON... AND 
BACK: ANOTHER LOOK AT SAMPLING 
Prandoni, P.; Vetterli, M.
IEEE Signal Processing Magazine,
vol. 26, no. 5, Sep. 2009, pp. 138–144

This article examines the interplay between 
analog and digital signals, casting discrete-
time sequences in the lead role, with continu-
ous-time signals entering the scene as a 
derived version of their gap-toothed 
archetypes.

25 2 2

AN INTRODUCTION TO COMPRESSIVE 
SAMPLING
Candes, E.J.; Wakin, M.B.
IEEE Signal Processing Magazine,
vol. 25, no. 2, Mar. 2008, pp. 21–30

This article surveys the theory of compressive 
sampling, also known as compressed sensing 
or CS, a novel sensing/sampling paradigm 
that goes against the common wisdom in 
data acquisition.

34 16 61 35 56 65 18
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TITLE, AUTHOR, PUBLICATION YEAR
IEEE SPS JOURNALS ABSTRACT

RANK IN IEEE TOP 100 
(MAY–OCT 2009)

N TIMES 
IN TOP 
100 SINCE 
JAN 2006OCT SEP AUG JUL JUN MAY

ANALYSIS OF THE SECURITY OF PERCEP-
TUAL IMAGE HASHING BASED ON NON-
NEGATIVE MATRIX FACTORIZATION
Khelifi, F.; Jiang, J.
IEEE Signal Processing Letters,
vol. 17, no. 1, Jan. 2010 (first 
published Sep. 2009), pp. 43–46

This article analyzes the security of a percep-
tual image hashing technique based on 
non-negative matrix factorization which 
was recently proposed and reported in the 
literature.

48 1

FACE RECOGNITION UNDER VARYING 
ILLUMINATION USING GRADIENTFACES
Zhang, T.; Tang, Y.Y.; Fang, B.; 
Shang, Z.; Liu, X.
IEEE Transactions on Image Processing,
vol. 18, no. 11, Nov. 2009, pp. 2599–2606

This paper proposes a novel method to 
extract illumination insensitive features for 
face recognition under varying lighting called 
the gradient faces.

56 1

A THEORY OF PHASE SINGULARITIES 
FOR IMAGE REPRESENTATION AND ITS 
APPLICATIONS TO OBJECT TRACKING 
AND IMAGE MATCHING 
Qiao, Y.; Wang, W.; Minematsu, N.; 
Liu, J; Takeda, M.; Tang, X.
IEEE Transactions on Image Processing,
vol. 18, no. 10, Oct. 2009, 
pp. 2153–2166

This paper studies phase singularities (PSs) for 
image representation and shows that PSs 
calculated with Laguerre-Gauss filters contain 
important information and provide a useful 
tool for image analysis.

58 27 2

FACE RECOGNITION USING DUAL-TREE 
COMPLEX WAVELET FEATURES
Liu, C.C.; Dai, D.Q.
IEEE Transactions on Image Processing,
vol. 18, no. 11, Nov. 2009, pp. 2593–2599

This paper proposes a novel facial represen-
tation based on the dual-tree complex 
wavelet transform for face recognition, 
which is effective in representing the 
geometrical structures in facial image with 
low redundancy.

66 1

TRAINING AN ACTIVE RANDOM FIELD 
FOR REAL-TIME IMAGE DENOISING
Barbu, A.
IEEE Transactions on Image Processing, 
vol. 18, no. 11, Nov. 2009, pp. 2451–2462

This paper proposes to train Markov random 
fields (MRF)/conditional random fields (CRF) 
model together with a fast and suboptimal 
inference algorithm, which results in consid-
erable gains in speed and accuracy.

79 1

AUTOMATIC IMAGE SEGMENTATION BY 
DYNAMIC REGION GROWTH AND MUL-
TIRESOLUTION MERGING
Ugarriza, L. G.; Saber, E.; Vantaram, S.R.; 
Amuso, V.; Shaw, M.; Bhaskar, R.
IEEE Transactions on Image Processing,
vol. 18, no. 10, Oct. 2009, pp. 2275–2288

This paper presents a new unsupervised color 
image segmentation algorithm, which 
exploits the information obtained from 
detecting edges in color images in the CIE 
L*a*b* color space.

84 83 2

COLLABORATIVE CYCLOSTATIONARY 
SPECTRUM SENSING FOR COGNITIVE 
RADIO SYSTEMS
Lunden, J.; Koivunen, V.; Huttunen, A.; 
Poor, H.V.
IEEE Transactions on Signal Processing, 
vol. 57, no. 11, Nov. 2009, pp. 4182–4195

This paper proposes an energy efficient 
collaborative cyclostationary spectrum 
sensing approach for cognitive 
radio systems.

95 1

APPLICATION OF SIGNAL 
PROCESSING TO THE ANALYSIS 
OF FINANCIAL DATA
Drakakis, K.
IEEE Signal Processing Magazine, 
vol. 26, no. 5, Sep. 2009, pp. 158–160

This article highlights some of the techniques 
used to represent and predict the main 
features of price evolution and to classify 
stock so as to design diversified investment 
portfolios.

11 1

GAME THEORY AND THE FLAT-FADING 
GAUSSIAN INTERFERENCE CHANNEL
Larsson, E.; Jorswieck, E.; 
Lindblom, J.; Mochaourab, R.
IEEE Signal Processing Magazine, 
vol. 26, no. 5, Sep. 2009, pp. 18–27

This article describes basic concepts from 
noncooperative and cooperative game theory 
and illustrates them by three examples using 
the interference channel model.

41 1
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CONTENT BASED IMAGE RETRIEVAL 
USING UNCLEAN POSITIVE EXAMPLES
Zhang, J.; Ye, L.
IEEE Transactions on Image Processing,
vol. 18, no. 10, Oct. 2009, pp. 2370–2375

This paper presents a scheme for training 
CBIR systems with unclean positive samples. 
To handle the noisy positive samples, the 
paper proposes a new two-step strategy by 
incorporating the methods of data cleaning 
and noise tolerant classifier.

63 1

FLEXIBLE DESIGN OF COGNITIVE RADIO 
WIRELESS SYSTEMS
Scutari, G.; Palomar, D.; Pang, J.-S.; 
Facchinei, F.
IEEE Signal Processing Magazine,
vol. 26, no. 5, Sep. 2009, pp. 107–123

This article presents that many unsolved 
resource allocation problems in the field of 
cognitive radio (CR) networks fit naturally 
either in the game theoretical paradigm or in 
the more general theory of VI.

65 1

GAME THEORY AND THE FREQUENCY 
SELECTIVE INTERFERENCE CHANNEL
Leshem, A.; Zehavi, E.
IEEE Signal Processing Magazine, 
vol. 26, no. 5, Sep. 2009, pp. 28–40

The article discusses the importance of the 
frequency selective interference channel and 
shows that it has many intriguing aspects 
from a game theoretic point of view.

66 1

A TUTORIAL ON PARTICLE FILTERS FOR 
ONLINE NONLINEAR/NON-GAUSSIAN 
BAYESIAN TRACKING
Arulampalam, M.S.; Maskell, S.; 
Gordon, N.; Clapp, T.
IEEE Transactions on Signal Processing,
vol. 50, no. 2, Feb. 2002, pp. 174–188

This paper reviews both optimal and subopti-
mal Bayesian algorithms for nonlinear/non-
Gaussian tracking problems, with a focus on 
particle filters.

67 60 44 25 29 38

COMPRESSIVE-PROJECTION PRINCIPAL 
COMPONENT ANALYSIS
Fowler, J.E.
IEEE Transactions on Image Processing,
vol. 18, no. 10, Oct. 2009, pp. 2230–2242

This paper presents a process that effectively 
shifts the computational burden of PCA from 
the resource-constrained encoder to a pre-
sumably more capable base-station decoder.

70 1

NOISE-DRIVEN ANISOTROPIC 
DIFFUSION FILTERING OF MRI
Krissian, K.; Aja-Fernandez, S.
IEEE Transactions on Image Processing,
vol. 18, no. 10, Oct. 2009, pp. 2265-2274

This paper presents a new filtering method to 
remove Rician noise from magnetic reso-
nance images.

94 1

RANDOM DISCRETE FRACTIONAL 
FOURIER TRANSFORM
Hsue, W.L.; Pei, S.C.
IEEE Signal Processing Letters, vol. 16, 
no. 12, Dec. 2009, pp. 1015–1018

This article proposes a random discrete 
fractional Fourier transform (RDFRFT) kernel 
matrix with random DFT eigenvectors and 
eigenvalues.

98 1

SUPER-RESOLUTION WITHOUT EXPLICIT 
SUBPIXEL MOTION ESTIMATION
Takeda, H.; Milanfar, P.; 
Protter, M.; Elad, M. 
IEEE Transactions on Image Processing,
vol. 18, no. 9, Sep. 2009, pp. 1958–1975

This paper introduces a novel framework for 
adaptive enhancement and spatiotemporal 
upscaling of videos containing complex activi-
ties without explicit need for accurate motion 
estimation.

36 1

A TOTAL VARIATION-BASED ALGO-
RITHM FOR PIXEL-LEVEL IMAGE FUSION
Kumar, M.; Dass, S.
IEEE Transactions on Image Processing,
vol. 18, no. 9, Sep. 2009, pp. 2137–2143

This paper proposes a total variation (TV) 
based approach for pixel-level fusion to fuse 
images acquired using multiple sensors.

48 1

N-SIFT: N-DIMENSIONAL SCALE INVARI-
ANT FEATURE TRANSFORM
Cheung, W.; Hamarneh, G. 
IEEE Transactions on Image Processing,
vol. 18, no. 9, Sep. 2009, pp. 2012–2021

This paper proposes the n-dimensional scale 
invariant feature transform (n-SIFT) method 
for extracting and matching salient features 
from scalar images of arbitrary dimensionality.

55 1

TITLE, AUTHOR, PUBLICATION YEAR
IEEE SPS JOURNALS ABSTRACT

RANK IN IEEE TOP 100 
(MAY–OCT 2009)

N TIMES 
IN TOP 
100 SINCE 
JAN 2006OCT SEP AUG JUL JUN MAY

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [19]   MARCH 2010

IMAGE QUALITY ASSESSMENT BASED 
ON MULTISCALE GEOMETRIC ANALYSIS
Gao, X.; Lu, W.; Tao, D.; Li, X.
IEEE Transactions on Image Processing,
vol. 18, no. 7, July 2009, pp. 1409–1423

This paper proposes a novel framework for 
image quality assessment (IQA) to mimic the 
human visual system (HVS) by incorporating the 
merits from multiscale geometric analysis (MGA), 
contrast sensitivity function (CSF), and the 
Weber’s law of just noticeable difference (JND). 

57 30 75 3

BRIDGING THE GAP BETWEEN 
SIGNAL AND POWER
Bollen, M.H.J.; Gu, I.Y.H.; Santoso, S.; 
McGranaghan, M.F.; Crossley, P.A.; Ribeiro, 
M.V.; Ribeiro, P.F.
IEEE Signal Processing Magazine, vol. 26, 
no. 4, Jul. 2009, pp. 12–31

This article focuses on problems and issues 
related to PQ and power system diagnostics, 
in particular those where signal processing 
techniques are extremely important.

64 1

IMAGE SEGMENTATION USING 
INFORMATION BOTTLENECK METHOD
Bardera, A.; Rigau, J.; Boada, I.; 
Feixas, M.; Sbert, M. 
IEEE Transactions on Image Processing,
vol. 18, no. 7, July 2009, pp. 1601–1612

This paper presents new image segmentation 
algorithms based on a hard version of the 
information bottleneck method.

69 54 2

AN ADAPTABLE K-NEAREST NEIGHBORS 
ALGORITHM FOR MMSE IMAGE 
INTERPOLATION
Ni, K. S.; Nguyen, T. Q.
IEEE Transactions on Image Processing,
vol. 18, no. 9, Sep. 2009, pp. 1976–1987

The paper proposes an image interpolation 
algorithm that is nonparametric and learning-
based, primarily using an adaptive k-nearest 
neighbor algorithm with global consider-
ations through Markov random fields.

80 1

SUPER-RESOLUTION IMAGE RECON-
STRUCTION: A TECHNICAL OVERVIEW
Park, S.C.; Park, M.K.; Kang, M.G.
IEEE Signal Processing Magazine, vol. 20, 
no. 3, May 2003, pp. 21–36

This article presents the technical review of 
various existing super resolution (SR) method-
ologies and models the low-resolution (LR) 
image acquisition process.

86 95 98 63 11

SIGNAL PROCESSING: A VIEW OF THE 
FUTURE, PART 2
Treichler, J.
IEEE Signal Processing Magazine, vol. 26, 
no. 3, May 2009, pp. 83–86

This article attempts to produce a behavioral 
model for the field of signal processing and 
then use that model to predict the field’s 
future.

91 55 82 36 5

IMAGE DENOISING USING MIXTURES 
OF PROJECTED GAUSSIAN SCALE MIX-
TURES
Goossens, B.; Pizurica, A.; Philips, W.
IEEE Transactions on Image Processing, vol. 18, 
no. 8, Aug. 2009, pp. 1689–1702

This paper proposes a new statistical model 
for image restoration in which neighbor-
hoods of wavelet subbands are modeled by a 
discrete mixture of linear projected Gaussian 
scale mixtures (MPGSM).

94 33 2

BEYOND BANDLIMITED SAMPLING
Eldar, Y.; Michaeli, T.
IEEE Signal Processing Magazine, 
vol. 26, no. 3, May 2009, pp. 48–68

This survey article presents several extensions 
of the Shannon theorem, which treat a wide 
class of input signals as well as nonideal 
sampling and nonlinear distortions.

53 81 28 4

SUPER RESOLUTION WITH PROBABILIS-
TIC MOTION ESTIMATION
Protter, M.; Elad, M.
IEEE Transactions on Image Processing, vol. 18, 
no. 8, Aug. 2009, pp. 1899–1904

This paper presents a new framework that 
leads to the same algorithm as the authors’ 
prior work but with an approach that is much 
simpler and more intuitive.

67 1

MIMO DETECTION METHODS: HOW 
THEY WORK
Larsson, E.G.
IEEE Signal Processing Magazine,
vol. 26, no. 3, May 2009, pp. 91–95

This tutorial article provides an overview of 
different MIMO detection approaches, in the 
communications receiver context.

80 65 56 4
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[from the GUEST EDITORS]

 Digital Object Identifier 10.1109/MSP.2009.935527

Signal Processing on Platforms with Multiple Cores: 
Part 2–Applications and Design

Yen-Kuang Chen,
Chaitali Chakrabarti,

Shuvra Bhattacharyya, and
Bruno Bougard

P
latforms with multiple cores 
are now prevalent everywhere 
from desktops and graphics 
processors to laptops and 
embedded systems. By adding 

more parallel computational resources 
while managing power consumption, mul-
ticore platforms offer better programma-
bility, performance, and power efficiency. 
Signal processing systems of tomorrow 
will be and must be implemented on plat-
forms with multiple cores. Writing effi-
cient parallel applications that utilize the 
computing capability of many processing 
cores require some effort. Signal process-
ing algorithm designers must understand 
the nuances of a multicore computing 
engine; only then can the tremendous 
computing power that such platforms pro-
vide be harnessed efficiently. To give a 
thorough perspective of the area, we have 
organized two special issues on this topic.

The first special issue, published in 
November 2009, provided an overview of 
multiple core systems along with some 
key methodologies. The articles provided 
coverage of key trends and emerging 
directions in architectures, design meth-
ods, software tools, and application devel-
opment for the design and implementation 
of multicore signal-processing systems. 
There were three articles surveying the 
multicore architectures, from general-
purpose processors and digital signal pro-
cessors (DSPs) to multiprocessor 
system-on-chip. These were followed by 
four articles discussing software develop-
ment methodology, including compilation 
tools that discover parallelism automati-
cally, parallel programming languages 
where programmers can annotate the par-
allelism, and approaches that require pro-
grammer to explicitly express the 

parallelism. Part 1 of the two-part special 
issue ended with four design-example arti-
cles spanning fast Fourier transform 
(FFT), video processing, video coding, and 
speech recognition. 

This special issue aims at 1) describing 
novel applications that can be enabled by 
platforms with multiple cores and 2) pro-
viding more extensive design examples to 
demonstrate useful techniques for devel-
oping efficient signal processing applica-
tions on platforms with multiple cores. 
Because multicore processors provide bet-
ter programmability, performance, and 
power efficiency, many computationally 

demanding applications are now feasible 
at a much lower cost. To illustrate this 
point, we look at applications that can 
be enabled by multicore platforms. 
Furthermore, to provide more compre-
hensive examples on how applications can 
be realized, we review implementation 
details on a larger set of applications. 

There are a total of ten articles in this 
special issue. They can be broadly classi-
fied into novel applications that can be 
enabled by platforms with multiple cores 
(articles one–four), and design examples 
illustrating useful techniques to enable 
efficient implementations on these plat-
forms (articles five–ten). Some of the arti-
cles represent both categories because it is 
often difficult to demonstrate novel appli-
cations without providing some relevant 
implementation details. In such cases, we 

have categorized the articles according to 
whether they emphasize the enabled appli-
cations or focus more on implementa-
tion techniques.

The first article by Palkovic et al. shows 
that software-defined radio (SDR), an at-
tractive solution for handling diverse and 
evolving wireless standards, makes effec-
tive use of multicore platforms. This arti-
cle provides an overview of multicore 
architectures for SDR platforms along 
with the specifics of their mapping flows. 
The authors also show how this technolo-
gy can be harnessed to handle more com-
plex workloads of emerging wireless 
communication standards.

The second article by Rzeszutek et al. 
shows that object segmentation with 
interactive frame rates can be enabled 
by the computational capability of mul-
ticore platforms. Segmenting the bound-
aries of objects in a video sequence is a 
complex and time-consuming task. 
Furthermore, many objects of interest, 
such as people and animals, have highly 
complex and irregular shapes. This arti-
cle presents a rotoscoping method that 
takes advantage of the ubiquitous multi-
core processors such as graphics pro-
cessing units (GPUs) to assist artists.

The third article by Samsi et al. 
explores the acceleration of computa-
tionally intensive applications by apply-
ing commonly used tools to exploit 
multicore platforms. The authors show 
that with small changes to sequential 
MATLAB code, it is possible to effec-
tively utilize today’s multicore systems 
and reduce simulation time. Two signal 
processing kernels (FFT and convolu-
tion) and two full applications (syn-
thetic aperture radar imaging and 
superconducting quantum interference 
devices) are used to illustrate the use of 
parallel MATLAB.

SIGNAL PROCESSING 
SYSTEMS OF 

TOMORROW WILL BE 
AND MUST BE 
IMPLEMENTED 

ON PLATFORMS WITH 
MULTIPLE CORES.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [21]   MARCH 2010

The last article of the novel application 
category shows that medical imaging, 
which is highly computation intensive, 
can now be implemented on an easily 
available multicore platform. The focus is 
on medical image registration, which is an 
integral part of image-guided intervention 
and therapy systems. Shams et al. provide 
an extensive survey of image registration 
algorithms and their performance on vari-
ous multi processor platforms, including 
cluster computers, GPUs, and CELL. 

The first design example article by 
Plishker et al. is a specific design example 
of medical imaging on GPUs. It demon-
strates that we must exploit hierarchical 
parallelism properly to get the best utiliza-
tion of the platforms. Although multicore 
platforms offer significant performance 
potential, there are challenges in finding 
and exploiting the parallelism. The authors 
depict a synergistic approach that first 
organizes application parallelism into a 
domain-specific taxonomy and then struc-
tures the algorithm to target a set of mul-
ticore platforms.

The article by di Bisceglie et al. demon-
strates the need to pay attention to the 
usage of resources (e.g., device memories, 
kernel functions, and synchronizations) 
and choose appropriate data transfer gran-
ularity to use the GPU resources efficiently. 
The authors show a design example of 
synthetic aperture radar on the GPU. 
While signal processing algorithms for 
synthetic aperture radar are becoming 
mature, it is a challenge to produce an 
accurate image in real time without a 
mainframe computer. This article provides 
an example on how to implement an 
important subset of focusing algorithms 
on general-purpose GPUs. 

The next article by Cheung et al. advo-
cates the need to structure the algorithm 
to expose as much data parallelism as pos-
sible to utilize the computational capabil-
ity. The article illustrates this for video 
codecs running on GPUs. While the GPU 
offers high peak performance, it is chal-
lenging to achieve it because of the depen-
dencies imposed by the codec. The authors 
demonstrate that with the proper algo-

rithm redesign, the performance of the 
fast motion estimation algorithm, for 
example, on GPU can be improved by 
three to four times. 

The article by Daudet also illustrates 
that we must reformulate the algorithm to 
expose the parallelism. He demonstrates 
this for the matching pursuit algorithm 
that is often used to solve very large sparse 
approximation problems. While matching 
pursuit is considered intrinsically sequen-
tial, a small modification of the algorithm 
can break the data dependencies and 
enable efficient implementation on multi-
core processors.

The article by Kim et al. shows that we 
must consider the underlying architec-
tural features in parallelizing workloads. 
Image processing applications have an 
abundance of parallelism and benefit sig-
nificantly from multicore systems. 
However, simply exploiting parallelism is 
not enough to achieve the best perfor-
mance. Optimization must take into 
account underlying architecture charac-
teristics such as wide vector and limited 
bandwidth. The article presents techniques 
that can be used to optimize performance 
for multicore x86 systems on three key 
image processing kernels, FFT, convolu-
tion, and histogram.

The last article by van Nieuwpoort and 
Romein demonstrates that we must have 
different implementation and optimiza-
tion strategies for multicore architectures 
with different performance characteristics.
The authors choose correlation computa-
tion in radio astronomy signals to com-
pare the performance, optimization, and 
programmability of multiple multicore 
platforms. The article shows how to pre-

dict what performance can be achieved on 
many-core platforms and where bottle-
necks can be expected. The authors also 
provide guidelines for optimizing on the 
different platforms. 

In short, this special issue showed 
that many novel applications can be 
enabled by platforms with multiple cores. 
These include image processing, video 
processing, rotoscoping, medical imag-
ing, SDR, synthetic aperture radar, and 
radio astronomy signal processing. This 
special issue also demonstrated useful 
techniques to develop efficient signal pro-
cessing applications on platforms with 
multiple cores. The era of signal process-
ing on systems with multiple/many cores 
has just started. We hope that you enjoy 
the articles in this special issue of IEEE 
Signal Processing Magazine as much as 
those in the November 2009 issue and 
that you find the contents informative 
and useful.

We sincerely thank the authors for 
their valuable contributions, as well as  
the anonymous reviewers for their help 
in ensuring the quality of this special 
issue. The goal of the two-part special 
issue was to capture state of the art in 
signal processing on platforms with mul-
tiple cores. Many papers were not 
selected because they did not fit into the 
scope of the special issue, even though 
some of them would have been excellent 
matches for other publications. 
Furthermore, the high quality require-
ments of IEEE Signal Processing 
Magazine forced us to reject papers even 
after multiple rounds of reviews. In fact, 
of the 144 white papers that were sub-
mitted, only 21 articles were published in 
these two special issues. We would like to 
thank everyone who submitted articles 
for their effort and express our regret 
that due to limited space and the need 
for balanced coverage, not all high-qual-
ity submissions could be included. 

Finally, we would like to thank Li 
Deng, Geri Krolin-Taylor, and Dan 
Schonfeld for their help and support in 
organizing the two-part special issue. 

[SP]

THE GOAL OF 
THE TWO-PART 
SPECIAL ISSUE 

WAS TO CAPTURE 
STATE OF THE ART 

IN SIGNAL PROCESSING 
ON PLATFORMS WITH 

MULTIPLE CORES.
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Future Software-Defined 
Radio Platforms 
and Mapping Flows

software-defined radio 
(SDR) system is a radio 

communication system 
in which physical layer 
components are imple-

mented on a programmable or reconfig-
urable platform. The mod  ulation and 
demodulation is performed in software and 
thus the radio is able to support a broad range 
of frequencies and functions concurrently. In the 
ideal SDR transceiver scheme, an analog-to-digital 
converter (ADC) and a digital-to-analog converter (DAC) 
are attached to the antenna. This would imply that a digital 
signal processor (DSP) is connected to the ADC and the DAC, 
directly performing signal processing for the streams of data 
from/to antenna [1]. Today, the ideal SDR transceiver scheme is 
still not feasible and thus some processing has to happen in the 
reconfigurable analog front end [2]. 

INTRODUCTION
In the past, SDR was mainly attractive for the military and wire-
less infrastructure segments. Recently, the SDR paradigm has 
also entered into the consumer electronics segment. This is 
driven by three main factors. First, the soaring chip development 

cost and respin rate in deep submicro era has driven chip ven-
dors to share the development costs across product lines. 
Second, extremely diversified market demand for different wire-
less standards has triggered the need for an ideal mobile termi-
nal to support these standards (from cellular to broadcasting) 
within a tight cost budget. Third, the fast evolution of wireless 
standards has caused a shorter time-to-market, which makes a 
programmable SDR solution attractive. 

SDR: THE NEED FOR MULTICORES AND WHAT IT BRINGS
The physical layer of a typical radio transceiver consists of an 
inner modem and an outer modem. The inner modem contains 

[Martin Palkovic, Praveen Raghavan, Min Li,  

   Antoine Dejonghe, Liesbet Van der Perre, and Francky Catthoor]

1053-5888/10/$26.00©2010IEEE

[An overview of their
  multicore architectures]
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transmission and environment parameters estimation (includ-
ing various acquisition and tracking tasks) and data detection 
(e.g., demapping and multiantenna detection), while the outer 
modem mostly performs the decoding/coding of the received/
transmitted stream of data (see Figure 1). On top of these two 
compute-intensive functionalities, multiple access control 
(MAC) functionalities is also needed to ensure appropriate tim-
ing of the operations and appropriate acknowledgment schemes. 
The various functionalities that are present in a radio transceiv-
er need different types of signal processing tasks and have dif-
ferent duty cycles. Furthermore the core computation of these 
different functionalities also vary substantially. For example, the 
inner modem requires mostly a fairly irregular computation 
with a large variation across the different standards, whereas 
the outer modem computation is a much more regular compu-
tation that needs limited flexibility. Each of these blocks also 
exhibit different types of parallelism (data level, instruction 
level, and task level). To reach maximal energy efficiency it is 
more efficient to tune one (or more) cores to a given function-
ality rather than to make a very flexible core. Various research 
works such as [3]–[5] have pointed towards optimally adapting 
the processor to make an application-specific instruction-set 
processor (ASIP). This gives almost an order of magnitude dif-
ference in the  energy efficiency compared to a DSP or a reduced 
instruction set computer (RISC). Given the above reasoning, it 
is quite evident that for a power efficient platform there exists a 
need for a heterogeneous multicore solution. 

Furthermore within a single standard [e.g., wireless lo-
cal area network (WLAN)] multiple modes exist. Each mode 
may require different signal processing tasks (e.g., different 
multiantenna transmission schemes) and also different com-
putational load. Figure 2 shows the performance require-
ment for some of the different modes of WLAN and long-term 
evolution (LTE) standards. The performance requirement is 
based on the number of 16-b RISC giga-operations per sec-
ond (GOPS) required for the inner-modem for peak-payload 
processing only. Performing all the computation on the 

same core running at a higher speed would be a very energy-
inefficient solution. This confirms the need for a multicore 
solution for SDR. Furthermore, the computation have to 
be performed on ASIP-like architectures instead of a DSP. A 
back-of-the-envelope computation for WLAN multiple input 
multiple output (MIMO) 2 3 2 40 MHz that requires approxi-
mately 25 GOPS shows that an application-specific integrat-
ed circuit (ASIC) that has an energy per operation of 5–10 
pJ/op [3] gives a power of 125 mW, a DSP that has a power 
efficiency of 125–250 pJ/op gives a power of 3 W, whereas an 
SDR ASIP that has a power efficiency of 15–30 pJ/op would 
give 375 mW. The power efficiency of 15–30 pJ/op is based on 
Interuniversity Microelectronics Centre’s (IMEC’s) SDR solu-
tion [6]. Because the heat dissipation in a handheld device 
should be kept under 3 W [7] and RF parts and user interface 
consumes approximately 1.5 W [8], we see that using 3 W 
DSP is not feasible. This further confirms the need for a more 
specialized and heterogeneous ASIP solution rather than a 
general purpose solution. 

An evolving step in the SDR community is the need for sup-
porting multiple standards on the platform in parallel. This is 
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[FIG1] Block diagram of typical WLAN RX functionality.
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one of the essential features that would be needed for evolution 
into a truly cognitive radio solution. A multicore solution is 
therefore essential to support such a case.  

SDR: THE NEED FOR MAPPING TOOLS
Multicore solutions make the mapping of the application(s) 
more difficult than ever before. The sequential aspect of the 
program that was kept before from the initial specification to 
final implementation has to change to parallel during 
 application mapping. The demand for mapping tools that make 
this process easier rises drastically. 

Wireless standards have hard real-time constraints on top 
of demanding throughput requirements, which makes the 
 parallelization task even more complex. Figure 2 shows the 
throughput requirement for WLAN and LTE as well as an esti-
mate of the computational requirement for the different 
modes. The computational load for only the inner modem 
computation ranges from a few 16-b GOPS to 150 GOPS on 
the most demanding case. Note that these are estimates of the 
performance under various assumptions of algorithmic choice, 
channel conditions, etc. To provide such a scalability, a need 
exists for tools to enable and explore the different paralleliza-
tion schemes on the multiprocessor system. 

This problem is further augmented by the possibility of 
exploiting parallelization at different levels. Platforms today 
exploit parallelization across the cores, across the threads within 
one core, across different functional units (FUs) within one core 
and within one FU (in a data parallel way). Exploring this large 
mapping space manually is not feasible. Thus, a selective tool 
support at different levels is crucial. 

An important aspect for the designer is not only to pick right 
tools to help him/her with the parallelization but also to think 
about the whole mapping flow and combination and interopera-
bility of the tools to achieve wished global optimality. The order-
ing of parallelization exploration at different levels is also crucial 
as we will see later in the text. 

MULTICORE SDR ARCHITECTURES: 
A COMBINATION OF HETEROGENEOUS AND 
HOMOGENEOUS MULTICORE APPROACHES
Radio transceiver ASICs for one standard consist of accelerators 
for the different functional blocks in the transmitter/receiver 
chain. These ASICs give the extreme end of the spectrum with 
little or no flexibility. Next-generation radios have been evolving 
into more programmable and more configurable solutions. The 
increased amount of standards to support and the dynamism in 
each of these standards have pushed baseband radio implemen-
tations towards a software centric end. This has lead to an evo-
lution where the baseband radio is implemented on flexible and 
programmable processors (SDR platforms) instead of pure 
ASIC-based solution. An overview of the freedom and the evolu-
tion of the flexibility is shown in [9]. 

Future SDR platforms will require multi-Gb/s connectivity, 
concurrency support, and spectrum sensing capabilities. This is 
not feasible without multicore SDRs. Different multicore 

approaches exist in reconfigurable radio architectures. Mostly, 
the combination of heterogeneous and homogeneous multicore 
approach is a viable option. At the top level, the platform resem-
bles a heterogeneous system, with a specialized digital front end 
(DFE), inner modem, and outer modem (forward-error correc-
tion) part. Each part potentially consists then of homogeneous 
multicore subsystem. Such a system should be able to run mul-
tiple future standards up and beyond to 1 Gb/s, allow sharing of 
hardware resources among several standards and support run-
time (RT) mechanisms at hardware and software level as well as 
supporting spectrum sensing capabilities. 

Given the large amount of software present inside these 
standards, to meet the high-performance and low-power 
requirements, there is a need for efficient exploitation of the 
different types of parallelism present. Broadly the parallelism 
can be broken down into three types: instruction-level paral-
lelism (ILP), data-level parallelism (DLP), and task-level paral-
lelism (TLP). ILP is when multiple instructions are executed 
in the processor in parallel, DLP is when multiple data ele-
ments undergo the same processing in parallel, and TLP is 
when multiple threads or tasks run in parallel on the proces-
sor or platform. Note that TLP can be exploited inside a single 
processor (intracore) or among processors (intercore). 

Different SDR platforms exploit different types of parallel-
ism in a better or worse way. Next, we give an overview of 
state-of-the-art multicore SDR platforms and highlight their 
important features. In the section “Comparative Study of 
Different Solutions,” we highlight the features of the different 
platforms and summarize the pros and cons of the listed 
SDR platforms. 

IMEC’S BEAR PLATFORM
IMEC’s baseband engine for adaptive radio (BEAR) platform is a 
multicore heterogeneous platform consisting of six cores and 
two accelerators (see Figure 3). The six processors include three 
ASIPs for coarse time synchronization (DFE), one ARM proces-
sor for control (ARM subsystem), and two architecture for 
dynamically reconfigurable embedded systems (ADRES) proces-
sors (baseband engines) for baseband inner-modem processing. 
The coarse time synchronization ASIP is a low-power very-long 
instruction word (VLIW) with two scalar and three vector issue 
slots. The ADRES processor is a coarse grain reconfigurable 
array (CGRA) processor that is highly flexible and energy effi-
cient. More information on the ADRES processor template can 
be found in [10]. The platform also contains accelerators for 
Viterbi decoding [forward error correction (FEC) accelerators]. 
The ARM processor is capable of performing control on the 
platform as well as to perform the MAC processing on the data 
stream. All the different cores are connected via an advanced 
microcontroller bus architecture (AMBA) for communication. 

The BEAR platform offers a good mix of homogeneous 
and heterogeneous intercore TLP. Both the ADRES as well as 
the DFE processors have been designed to provide the appro-
priate mix of DLP and ILP for their corresponding tasks. 
Since the outer modem processing requires low flexibility 
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and high computation, it has been implemented as an ASIC 
accelerator. The inner modem, which requires high flexibility 
across different standards and inside one standard, has been imple-
mented as a programmable processor. More detailed measurement 
results of the platform can be found in [6]. 

For the baseband processing, two ADRES processors are used. 
One such ADRES processor is shown in Figure 4. Each of the dif-
ferent FUs in the ADRES processor supports single instruction 
mul tiple data (SIMD) operations. Given that each ADRES proces-
sor offers ILP and DLP, and there are two such processors (TLP 
can be also used), a good parallelization strategy is a must to 
obtain an efficient mapping. Because the wireless application 
domain offers all the three different types of parallelism, various 
tradeoffs are possible on the type of parallelization strategy chosen, 
and each choice would have a different cost impact. These tradeoffs 

become even more varied when each standard to be mapped has 
various different modes, each of which have different computation 
and communication requirements. 

SANDBRIDGE/SB3500
Sandbridge’s SB3500 [11], [12] is the latest SDR platform genera-
tion from Sandbridge. The block diagram of the platform is depict-
ed in Figure 5. This platform consists of four cores connected on 
an AMBA bus. Similar to other SDRs the control and the manage-
ment of the platform is performed on the ARM processor. The 
remaining three cores on the platform are custom cores from 
Sandbridge called Sandblaster. Thus, the heterogeneity on this 
platform is very limited, differentiating only between the control 
(ARM) and the data processing (Sandblaster). All the inner- and 
outer-modem processing is done on the three Sandblaster cores. 
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Each of the three Sandblaster cores has support for 
SIMD instructions and thus it can exploit the DLP available 
in the application. Because the platform consists of three 
data processing cores, inter-TLP among the different tasks 
in the application can be also exploited on the platform. 
Each Sandblaster core also offers a fine-grain intra-TLP 
inside a single core. This intracore parallelism is also 
referred to as “token triggered threading” (T 3), which is a 
form of simultaneous multithreading (SMT). Support for 
SMT allows the core to switch between different threads and 

their contexts quickly. However, the 
Sandblaster core has only limited ILP 
where only four instructions can be 
executed in parallel. 

INFINEON MUSIC
Infineon’s MuSIC-1 platform [9] is a 
heterogeneous multicore platform that 
consists of various accelerators along 
with four programmable cores. Each of 
these four programmable cores pro-
vides DLP and is used for the inner 
modem PHY processing with the help 
of filter accelerators. The turbo/Viterbi 
accelerators are used for performing 
the outer modem PHY processing. The 
block diagram of the platform is depict-
ed in Figure 6. 

The multicore nature of the MuSIC-1 
platform supports intercore TLP, which 
allows the mapping of different tasks on 
different cores. Similar to Sandbridge, 
the ILP inside a single core is limited. 

ST-ERICSSON EXTREME VECTOR 
PROCESSOR PLATFORM
The extreme vector processor (EVP) [13] 
consists of 16-wide SIMD processor with 
five issue slots. Three of the five slots 
operate on vector data and two operate 
on scalar data. This processor exploits 
both data- and instruction-level parallel-
ism in the application. However, not 
much public information is available on 
the complete platform architecture and 
how many cores would be needed to sup-
port a wireless standard. 

ARM/UNIVERSITY OF 
MICHIGAN’S ARDBEG PLATFORM
ARM/University of Michigan’s Ardbeg 
platform [14] consists of three proces-
sor cores. Two cores are allocated for 
baseband processing and one core for 
control. The platform also consists of a 

turbo coprocessor for outer-modem processing (see Fig-
ure 7). The platform enables TLP to be exploitable between 
the four functional blocks (control processor, two baseband 
cores, and a turbo accelerator). Each of the baseband cores 
is 512-b wide and is capable of performing 64-way, 32-way, 
and 16-way SIMD on 8-b, 16-b, and 32-b data, respectively. 
However, the baseband core does not allow a large amount 
of ILP inside the core. The baseband processor is also used 
to perform certain outer-modem functionality such as 
Viterbi decoding. 
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[FIG4] IMEC’s ADRES processor in the BEAR platform.
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OTHER SOLUTIONS
Other platforms include Silicon Hive’s CSP 
series [15]. These processors allow a large 
mix of ILP and DLP that can be exploited 
in the processor. However, there is not 
enough public information so it is not 
clear how these processors would fit on a 
platform, what parts of the PHY would 
map on the processor, and where the MAC 
processing would be mapped. Picochip’s 
PC205 [16] solution also offers a mix of 
ILP, DLP, and TLP on the platform. 
However, this platform consists of a large 
number of hardware accelerators that 
pushes the platform towards a less flexible 
solution. Ceva’s Ceva-XC platform [17] also 
consists of a mix of DLP and ILP available 
on the platform. The vector cores used on 
the platform consist of special instructions 
to accelerate the outer-modem processing. 

COMPARATIVE STUDY OF 
DIFFERENT SOLUTIONS
Table 1 gives a comparative study of the 
parallelism offered by the different plat-
forms. Each platform offers a different mix 
of parallelism to the programmer. It is 
interesting to note that all these platforms 
offer a high- to medium-data level parallel-
ism. This is largely because of the fact that 
DLP is an energy- efficient way to exploit 
parallelism and most standards offer data-
level parallelism. However, the other types 
of parallelisms are quite varied across the 
different platforms. To reach the required 
performance, each platform exploits differ-
ent types of parallelism on top of the DLP. 

In terms of area and power, it is very 
difficult to perform a good comparison 
with the information available in the 
public domain. Based on public informa-
tion, it is not clear what the precise set 
of functionality is running on the plat-
form, what the duty cycle of the process-
ing is, what the area includes, what mode 
it is measured under, and what level of power/area estimation 
is used. Furthermore, the objective function that is even hard-
er to compare is flexibility, platforms may have a specialized 
instruction set or accelerators that may heavily limit flexibility 
to port another standard on it. 

MAPPING FLOWS FOR MULTICORE 
RADIO ARCHITECTURES
As shown in previous sections, different state-of-the-art SDR 
platforms exhibit different granularity and type of parallelism. 
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[TABLE 1] COMPARISON OF PARALLELISM OFFERED 
BY DIFFERENT PLATFORMS (L: LOW, M: MEDIUM, H: HIGH).

PLATFORM DLP ILP INTER TLP INTRA TLP

CEVA-XC [17] M M L L
IMEC BEAR [6] M H M L
UMICH/ARM [14] H L L L
ST-NXP [13] H L L L
INFINEON’S MUSIC-1 [9] M M L M
SANDBRIDGE’S SB3500 
[11], [12]

M L M H
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Programming such radio architectures requires having an 
appropriate mapping flow supported by the tools that can 
explore TLP, DLP, and ILP. Mapping process starts from algorith-
mic specification of a radio standard that is tuned to a optimized 
code utilizing DLP and ILP and keeping task distribution (TLP) 
in mind.  

SYSTEMATIC GLOBAL FLOW PRINCIPLES 
FOR EXPLOITING PARALLELIZATION
As mentioned before, different types of parallelism can be exploit-
ed in the application: TLP, DLP, and ILP. These types of parallelism 
have different granularity and impose different constraints on the 
remaining part of the mapping flow. Because of its middle granu-
larity, ILP is the most restrictive type of parallelism and it should 
be applied as the last step in the parallelization mapping flow. 
Applying ILP too early can seriously restrict some TLP options. 
For example, when applying the transformations to achieve a good 
ILP in a certain part of the application, it might not be possible to 
split this part to two separate tasks any more. Reversed ordering, 
i.e., applying ILP after TLP, is less restrictive. DLP has the fine 
granularity and thus it can be applied very locally. Still, when 
exploiting ILP, DLP should be already explored. This can be moti-
vated by the fact that DLP can always be broken down into ILP and 
not vice versa. However, DLP should be exploited in the individual 
tasks, because different tasks can utilize different DLP strategies. 
Thus, DLP exploration should be placed between TLP and ILP 
exploration. TLP itself has two subclasses, interprocessor TLP, 
which is TLP across several processor cores, and intraprocessor 
TLP, which is TLP across several threads within one core. To per-
form interprocessor TLP first and then intraprocessor TLP is natu-
ral order as it provide the lowest constraints on the available 
search space freedom. The tasks operating on different cores 
should have minimal communication, whereas the tasks running 
on different threads within one core can afford more communica-
tion overhead. 

When exploiting TLP, functional and/or data split can be 
applied. The functional split assigns different functionality to dif-
ferent tasks. The data split assigns different iteration ranges of the 
same fun  ctionality to different threads. Also, a combination of 
both is possible. A specific combination is task pipelining, when 
different functionality in different iteration ranges is executed in 
parallel. Data split in TLP might limit the DLP, however, the free-
dom for DLP is not so limited as it would be in reversed ordering. 
This also confirms the need to apply TLP before DLP. 

WORKLOAD ESTIMATION ISSUES 
IN THE MAPPING FLOW
In the section “Systematic Global Flow Principles for Exploiting 
Parallelization,” the flow requires an estimate of the workload for 
load balancing in TLP and estimation of communication over-
head. This requires exploration of DLP and ILP first to obtain the 
timing information. There are two possibilities that can solve this 
issue. The first one is to utilize high-level estimators during deci-
sion on the TLP parallelization strategy. Those estimators provide 
the designer with the upper and lower bounds of DLP and ILP. 

The second possibility is to rely on an experienced designer that 
can perform those estimations “in his head.” We can observe this 
in most practical mapping flows. Even when we start with DLP 
and ILP parallelism that can be exploited within one processing 
core, we also implicitly explore TLP at the beginning of the flow. 
This type of practical mapping flow was also confirmed by the 
Multicore Association, which encompasses many important 
industrial players [18]. If the designer is not experienced enough 
and performs wrong implicit TLP exploration, he/she will enter in 
the global loop where he/she has to return to the DLP or ILP 
exploration when no  satisfactory TLP solution has been found. 
Those loops are, of course, too costly and are very rarely entered 
by an experienced designer. However, it is still possible. The high-
level estimators can eliminate these errors and thus are a crucial 
component for a more automated future mapping flows, especial-
ly when RT managers have to make these decisions (see the sec-
tion “Dynamic Scalability of Baseband Signal Processing: Impact 
on Mapping”). 

BEAR MAPPING FLOW
Every mapping flow starts with initial algorithmic specification 
and ends with final implementation targeting the best perfor-
mance, energy and/or area on a given platform. During the 
mapping flow, different transformations are applied that expose 
certain properties of the application. In the BEAR mapping 
flow, we have mainly focused on exposing parallelization at dif-
ferent granularity levels, that allows us utilizing the platform 
resources efficiently. These transformations are orthogonal 
with transformations targeting other issues such as optimizing 
the memory hierarchy system [19], [20]. 

The BEAR mapping flow in Figure 8 starts with initial 
MATLAB algorithmic specification. Then, high-level MATLAB 
transformations are applied. Those optimizations allow effi-
cient C code generation later and also include global data-flow 
and loop transformations [19] , [20]. The code is quantized and 
MATLAB to C conversion tool [21] is used to generate the C 
code. The C code is split into kernels such as FFT, tracking, 
channel compensation, demodulation, and skeleton code that 
is calling these kernels. The skeleton code is cleaned, i.e., the 
constructs not supported by the parallelization flow are rewrit-
ten (such as dynamic allocation). The kernels are optimized in 
separate path. First, special intrinsic instructions of the target 
ADRES processor [10] are used that allow SIMD operations. 
After exploiting DLP, ILP is exploited by (low-level) loop trans-
formations such as loop unrolling, loop coalescing, if conver-
sion, code hoisting etc. Note the difference with the loop 
transformations at MATLAB level that are applied more global-
ly, not only within one loop nest. Precompilation of the ker-
nels using our DRESC compiler [10] is ending the kernel 
optimization process. 

After kernel optimization, precompiled kernels can be 
combined with the cleaned skeleton code resulting in efficient 
sequential implementation that is profiled. To exploit TLP 
across the kernels, we utilize our MPA in-house tool [22]. MPA 
takes as input the sequential C code and a parallelization 
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 specification, based on which the parallel 
code is generated. The synchronization 
is automatically inserted in the parallel 
code when needed to obey the original 
dependencies. The parallelization specifi-
cation distributes each iteration instance 
of the different kernel among the differ-
ent threads and/or processors (intra- and 
inter-TLP). When knowing the durations 
of the kernels in each iteration via the 
profiling (see Figure 8), the performance 
of the parallelized code can be rapidly 
evaluated by our high-level simulator. 
The parallelization is specified by paral-
lelization specification file written by the 
designer. As previously mentioned, the 
experienced designer will have the possi-
ble parallelization specifications “in his 
head” even before starting the DLP and 
ILP exploration. After selecting the best 
parallelization strategy, the parallelized 
code is combined with the RT library to 
bridge the MPA tool high-level applica-
tion programming inteface (API) and the 
platform low-level API to achieve the 
final implementation. On the BEAR plat-
form, the threads and communication 
between them is controlled by the ARM processor. 

Our mapping flow allowed exploration of different paral-
lelization possibilities such as an antenna- and symbol-based 
split for WLAN MIMO 2 3 2 40 MHz. It also allowed achieve-
ment of the real-time throughput behavior [23] and exploration 
of the maximum feasible parallelism for increased number of 
processing cores for the same application. We also experienced 
the global loops in the flow that are mentioned in the previous 
section. When we first optimized the kernels for DLP and ILP 
with focusing on per-symbol TLP split [23], it was not feasible 
with the same DLP and ILP solution to perform the antenna 
TLP split. The mapping flow can be used as in multiprocessor 
context (inter-TLP) so in multithreading context (intra-TLP). 

SANDBRIDGE MAPPING FLOW
In the case of the Sandbridge architecture described in the sec-
tion “Sandbridge/SB3500,” not many details are available on a 
full methodology. Based on the mapping strategies described in 
[24] and [25], it is clear that the intercore thread-level parallel-
ism is first exploited, followed by intracore thread-level parallel-
ism. The process of deciding on the intracore threads is 
fine-grained compared to other platforms as the Sandbridge 
processor exploits the T 3 technology. The T 3 technique allows 
quick context switches among multiple threads on the same 
core to up to eight threads on a single core. After deciding the 
inter- and intrathreads, the data level and the instruction-level 
parallelism is finally exploited. The decision on the paralleliza-
tion strategy and the parallelization itself is left to the developer. 

TEXAS INSTRUMENTS’ ALGORITHM 
ARCHITECTURE MATCHING METHODOLOGY
The algorithm architecture matching (AAM) methodology 
developed by Texas Instruments maps an algorithm that is 
described as a graph to a physical architecture given a set of 
constraints [26]. The architecture is described as the architec-
ture graph in which vertices represent operators (DSP cores) 
and the edges represent communication. The AAM methodology 
takes the two graphs and set of constraints and it performs 
placement and scheduling of the algorithm graph nodes over 
architecture graph nodes. This resembles IMEC’s dynamically 
reconfigurable embedded system compiler (DRESC) modulo 
scheduling approach [10], but on a much coarser level. The 
architectural nodes in AAM are complete DSP cores where as in 
the DRESC, the architectural nodes are FUs in the CGRA part of 
the processor. 

The AAM methodology is employed using the parallel real-
time embedded executives scheduling method (PREESM) tool. 
Even when the tool can generate code, the input of the tool has 
to be described as a synchronous data flow (SDF) graph, which 
is increasing the manual effort during the mapping process. On 
the other side, once the SDF graph is present, the exploration 
for different architectures is straightforward. Of course, appro-
priate architecture graphs have to be present. 

INFINEON MUSIC MAPPING FLOW
For the MuSIC platform described in the section “Infineon 
MuSIC,” the mapping flow starts from a functional C 
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[FIG8] BEAR mapping flow.
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 description of the complete 
standard. This is further refined 
by choosing the right paral-
lelization strategy in both the 
thread level and data level [27], 
[28]. The DLP parallelization 
(SIMD) is then exploited using 
extensions to the C language 
as described in [29]. As mentioned in the section “Workload 
Estimation Issues in the Mapping Flow,” the SIMD estima-
tions are performed in the head of the designer before per-
forming the thread-level parallelization. The DLP 
parallelization (using SIMD instructions) itself is performed 
manually, which is often common in most design flows. 
Furthermore, the MuSIC platform also has a lightweight 
real-time operating  system (RTOS) called ILTOS to enable 
multithreaded programming. The API of ILTOS provides 
basic functions for thread administration, memory manage-
ment, synchronization etc. Communication API is similar to 
the API provided by IMEC’s MPA tool. 

SPEX—A PROGRAMMING 
LANGUAGE FOR SDR
SPEX [30], from the University of Michigan, is an object-ori-
ented programming language based on C11 semantic target-
ing the SDR platforms. Three additional keywords are added 
to the language kernel, stream, and synchronous to distin-
guish the sequential C kernels in the application, concurrent 
data streaming, and discrete real-time computations. This 
provides a clear interface among the DSP algorithm descrip-
tion in kernel SPEX, parallel execution in stream SPEX, and 
system integration in synchronous SPEX. The different SPEXs 
are compiled by different compilers in different phases of the 
mapping; kernel SPEX with the SIMD and VLIW compiler, 
stream SPEX with the data flow compiler, and synchronous 

SPEX with the real-time com-
piler. The SPEX flow is shown 
in Figure 9. 

We consider this approach 
similar to our BEAR baseband 
mapping flow approach (see the 
section “BEAR Mapping Flow”). 
The kernel approach is similar 

to IMEC’s approach where kernels are optimized and precom-
piled by the DRESC. The stream SPEX can be compared to the 
mixture of the parallelization phase in BEAR flow (using MPA) 
and the first part of system integration phase. Synchronous 
SPEX can be considered the last phase of the IMEC system inte-
gration step. 

OTHER MAPPING FLOWS
In a task-transaction level (TTL) methodology [31] developed at 
University of Twente and Philips Research, an application is mod-
eled as a task graph, where a task is an entity that performs com-
putations. The implementations are encapsulated in TTL shells 
that are exposed to the platform. The TTL approach raises the level 
of the abstraction, and it tries to close the gap between application 
models used for specification and the optimized implementation of 
the application by its combination. However, it seems that the 
placement and scheduling process it manual to the large extend 
compared e.g., to the AAM approach described in the section “Texas 
Instruments’ Algorithm Architecture Matching Methodology.”

COMPARISON OF DIFFERENT MAPPING FLOWS
In previous sections, we first looked at the SDR mapping 
methodology from the meta-level perspective and then pro-
vided instantiations developed by different groups for differ-
ent SDR platforms. The common drawback we see for most of 
the methodologies is either the need for graph description of 
the application (e.g., AAM) or just providing programming 

models for the SDR mapping (e.g., TTL) 
without  any tool  support .  Both 
approaches can result in tedious and 
error-prone mapping. Also, most meth-
odologies focus only on mapping for a 
particular homogeneous system (e.g., 
SPEX is targeting multicore SIMD DSP 
processor platform only) and we miss 
heterogeneity of given solutions. 
Currently this is the main challenging 
task we foresee in the SDR mapping. 
Some attempts have been made recently 
to cover this gap, i.e., extend the 
OpenMP for heterogeneous multicore 
systems [32]. In this context, we see the 
BEAR mapping flow as one of more com-
plete solutions. Even though some parts 
of the flow are fully manual, the critical 
parts of the mapping are automated and 
tool support is present. 

Class viterbi {
  vec metric
  void acs (vec in);
…
}
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[FIG9] SPEX design flow [30].

THE FAST EVOLUTION OF WIRELESS 
STANDARDS HAS CAUSED A SHORTER 

TIME-TO-MARKET, WHICH 
MAKES A PROGRAMMABLE SDR 

SOLUTION ATTRACTIVE.
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FUTURE RESEARCH DIRECTIONS: MOVING TOWARD 
DYNAMIC MULTICORE COGNITIVE RADIO PLATFORMS
Multicore SDR and the associated mapping techniques enable 
applications that were not feasible in the single-core SDR era. 
In the following sections, we will discuss the trends that are 
enabled by multicore SDR. First, we will focus on concurrent 
data streams/connections and their impact on RT manage-
ment. Then we will highlight dynamic scalability of wireless 
systems and its impact on mapping. Finally, we will tackle new 
complexity challenges for fourth generation (4G) and beyond, 
multiuser and network MIMO, and spectrum sensing. 

CONCURRENT MULTIPLE CONNECTIONS/STREAMS

MOTIVATION
In the past, the management of concurrent data streams or con-
nections mostly happened for SDR base stations. However, this 
functionality of management of concurrent streams is moving 
to the mobile terminals as well. For instance, a mobile terminal 
may need to stream encoded music data from a WLAN connec-
tion, and the decoded music needs to be sent to a wireless ear-
phone with a Bluetooth link. The scenario of voice over Internet 
protocol calls with a wireless earphone is very similar. In many 
other cases, although multiple data streams are not explicitly 
visible for the user, the baseband processing still needs to tackle 
multiple connections with different streams of raw data. For 
instance, when the user is browsing the Internet with the 
WLAN connection of his or her mobile, in the background the 
mobile may be continuously ranging and synchronizing with 
multiple base stations for cellular links such as LTE or LTE-
advanced. In the long term, tackling concurrent connections 
and streams will become even more important. In future wire-
less mesh and ad-hoc network, terminals may need to relay 
multiple data streams in the background, whereas the fore-
ground data streams still have to be guaranteed. Clearly, tack-
ling multiple connections and data streams simultaneously will 
be essential for future SDR devices. 

IMPACT ON RT MANAGEMENT
Multiple streams and standards operation on the SDR plat-
form in parallel will have also an impact on the RT manage-
ment of the platform. The platform control should be more 
distributed compared to today’s centralized control. The plat-
form and the platform control should support coexistence of 
multiple standards and the hand-over between the standards. 
We foresee the flexibility supporting this during the RT in the 
next three planes. 

The multistandard plane supporting concurrent run of  ■

multiple standards in parallel ensures that each standard can 
run on separate processor core and/or as separate threads 
within a core, if the core can support intraprocessor TLP. 
Note that a standard can be distributed across several threads 
and/or cores. 

The horizontal plane ensures the flexibility and implemen- ■

tation scalability of a standard (within a given mode). For 

example, there are several possible implementations of WLAN 
MIMO 2 3 2 40 MHz, resulting in energy-time-area tradeoff, 
where one implementation can be energy efficient but not so 
performing as other, energy-hungry implementation. The 
implementations can differ also in code size that is reflected 
in the area axis of the tradeoff. 

The vertical plane ensures mode scalability of a standard,  ■

i.e., that we can switch among different modes of the given 
standard. A typical example is the single input single output/
MIMO mode support where a decision is made based on the 
incoming signal field (in the case of WLAN). 
Those planes are important also in a hand-over scenario, 

where the situation could be as follows. One standard that is 
running on the platform scales down (horizontal plane) to free 
space for the second standard. For a certain period of time, the 
two standards run parallel and the hand-over will happen. Then 
the first standard is stopped and the second standard is scaled to 
all available resources. Thus, the hand-over issue is naturally 
connected to concurrent connections and RT support for the 
future platforms should be adapted to this. 

DYNAMIC SCALABILITY OF BASEBAND 
SIGNAL PROCESSING: IMPACT ON MAPPING
In wireless systems, both the environment and the user 
requirement contain abundant dynamics. First, the environ-
ment is inherently time varying, e.g., channel conditions, 
interferences, and spectrum utilization. In addition, the user 
requirement also contains lots of dynamics, e.g., data rate, tol-
erable error, tolerable jitter, and tolerable latency. Baseband 
with dynamic scalability can adjust processing complexity 
according to the above dynamics [33]. For instance, the search 
range of nonlinear MIMO detectors, the modulation accuracy 
of orthogonal frequency division multiple access modulator, 
and the tracking strength of channel estimators can be adjust-
ed based on different metrics or requirements. These adapta-
tions will lead to heavily reduced computations and memory 
accesses, which eventually translates into substantially reduced 
average energy consumption. 

Although such dynamic scalability can improve energy effi-
ciency, it imposes many challenges on multicore mapping. 
Importantly, the work load of tasks are not completely deter-
ministic anymore, it will depend on channel conditions and 
input data. This brings complex situations when handling real-
life baseband signal processing on a multicore platform. Worst-
case mapping would suffer severely from efficiency, therefore a 
mix of design-time and RT decisions would be needed to reach 
an efficient solution. 

NEW COMPLEXITY CHALLENGES

BASEBAND COMPLEXITY OF 4G AND BEYOND
International Mobile Telecommunications-Advanced (IMT-
Advanced), has already initialized massive effort for the 
 evolution beyond the 3rd Generation Partnership Project 
(3GPP), LTE, and IEEE802.16e. The planned improvement 
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spreads over system architec-
ture, radio resource manage-
ment, MAC scheme, and air 
interface. Regarding the air 
interface, it is clear that very 
large bandwidth (e.g., 100 
MHz) and larger MIMO systems (e.g., 4 3 4 or even higher) 
[34] will be implemented. This increased bandwidth directly 
translates to a complexity challenge that requires multiple-
core baseband platform and efficient mapping therefore 
becomes more crucial. 

To enable this, there is a need for further improvement in 
the platform architecture as well as in the algorithms to obtain 
the best combination of architecture and algorithm. Better use 
of the parallelism is definitely one of the key challenges to be 
addressed. Importantly, future algorithmic engineering will 
have to take into account architecture characteristics from the 
very beginning of the mapping flow, to ensure that TLP, DLP, 
and ILP can be effectively exploited in later mapping steps. 

MULTIUSER MIMO AND NETWORK MIMO
Multiuser MIMO and network MIMO have been considered as a 
promising candidate technology for highly spectrum efficient 
wireless systems. Whereas traditional MIMO leaped from the 
traditional multipath avoidance and compensation paradigm to 
the multipath exploitation paradigm, multiuser MIMO and net-
work MIMO jump one step further, shaping interference and 
exploiting interference. However, such a new paradigm brings 
higher spectrum efficiency at the cost of significantly increased 
computation complexity. For multiuser MIMO, the condition 
or capacity of many user-specific MIMO channels have to be 
analyzed, steered, or compensated. Complex signal processing 
algorithms, such as eigenvalue spread analysis, will become 
necessary. For network MIMO, joint processing and detection 
will increase the dimension of signal processing, the increment 
of complexity would be orders of magnitudes. 

SPECTRUM SENSING
One of the key enablers of next-generation cognitive radio sys-
tems would be “spectrum sensing” [1], [35]. This would imply 
that each of the different users would be able to sense the 
spectrum usage in the air and use the spectrum that would be 
the most optimal in a more dynamic way. This would enable 
each user to use the spectrum in a more effective way. Various 
standardization efforts like IEEE 802.22 [36] are currently in 
progress to standardize cognitive radio and sensing require-
ments. This may not only happen in the digital TV bands but 
spectrum sensing would also help a better coexistence scenari-
os between various standards like 802.11 and 802.15.4. Such 
spectrum sensing techniques would also bring higher levels of 
dynamism and complexity to the mobile terminal. 

CONCLUSIONS
In this article, we provided an overview of multicore architec-
tures for future SDR platforms and their mapping flows. First, 

we motivated the need for scal-
able and reconfigurable het-
erogeneous multicore SDR 
platforms  driven by technology 
constraints, user demands, and 
business aspects. We also high-

lighted the urgent need for appropriate mapping flows when 
mapping on those platforms. Then we gave an overview of the 
most popular multicore SDR platforms on the market with a 
short comparative study among them. In the mapping flow 
section, we started a discussion on general mapping flow going 
to different instances of the mapping flows. Finally, we dis-
cussed the new aspects and applications the multicore SDR era 
with proper mapping flow will bring. 
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R
otoscoping is a very old, 
complex, and time-con-
suming post-processing 
technique used by an ani-
mator to manually pro-

duce segmentation masks for a video 
sequence. Specifically, it is the act of 
tracing or outlining objects that appear 
in the frames. Doing so on a frame-by-
frame basis means that a couple minutes of 
footage will require many hours of work. 
Tracing or outlining objects that appear in 
frames is done for a number of reasons, but it is 
generally to apply special effects to a scene. For instance, 
the 2006 film A Scanner Darkly uses rotoscoping to make 
the live action film appear animated. Rotoscoping can also be 
used to manually generate mattes, i.e., masks, in scenes where 
it may be impossible to use other methods, such as chromakey 
(colloquially known as “green screen”). Furthermore, most 
objects tend to have highly complex and irregular shapes (e.g., 
people, animals, and foliage). This makes it difficult for an artist 
to use tools such as Bézier curves to properly produce the 
required masks. 

In this article, we present a rotoscoping method that takes 
advantage of ubiquitous multicore processors such as GPUs to 
assist an artist with the rotoscoping process. We have imple-

mented this rotoscoping method as a plug-in to a commercial 
compositing application to demonstrate how multicore pro-
cessors can be applied to practical applications.

INTRODUCTION
Recently, rotoscoping has been applied to the problem of con-
verting a conventional image sequence into a stereoscopic 
image sequence [1] (also referred to as “two-dimensional (2-D) 
to three-dimensional (3-D) image conversion”). Rotoscoping is 
used to extract all of the key objects in the scene so that they 
can be manipulated to produce the left and right eye image pair. 
This particular application of rotoscoping is more difficult than 
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© PHOTO F/X2

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [35]   MARCH 2010

other applications since it 
requires a high degree of accu-
racy when describing the object 
boundaries. If the boundaries 
are not accurate, visual aberra-
tions, such the background 
appearing to be the same depth as the foreground, can occur. 

Traditional rotoscoping methods use parametric curves, 
such as Bézier curves [2], to describe the object boundaries 
rather than having the artist generate each matte from 
scratch. The curves themselves are described by control points, 
which are placed by the artist at specific locations on the 
object boundary. The shape of the curve between control 
points is specified by handles that represent the “in” and “out” 
tangents of the curve. Figure 1 demonstrates the basic setup of 
a parametric curve. Because only the control points are speci-
fied, the artist only has to manipulate those points rather than 
attempt to draw the entire matte manually. 

Unfortunately, arbitrarily complex shapes are not easily 
described by parametric curves. Sharp corners (such as an 
N-sided polygon) require their own control points since each 
corner represents a discontinuity in the first derivative of the 
function describing the object’s shape. Therefore, many con-
trol points are required to adequately describe such a bound-
ary. This makes the process more difficult since the artist must 
now keep track of these points over many frames. 

A number of methods have been proposed to assist with the 
rotoscoping process. Some methods actively modify the points 
laid down by the artist and use optical tracking methods to 
adjust the curve between keyframes [3]. Other methods [4] use 
“active contours” [5] to produce a time-varying mask based on 
the initial curve. The main disadvantages of these methods are 
that they are either difficult to correct or require an experi-
enced user. Our proposed method [6] simply corrects the curve 
laid down by the animator and trusts their judgement on the 
locations of the control points.

ASSISTED ROTOSCOPING
Our assisted rotoscoping method is based on the random walks 
framework by Grady et al. [7], [8]. Certain properties of the 
algorithm make it very useful for rotoscoping applications. In 
particular, since it is the solution to a system of linear equa-
tions, it is highly amenable to parallel implementations. 
Furthermore, it is a locally operating algorithm in that uncon-
nected pixels do not affect each other. Unfortunately, random 
walks is rather susceptible to noise, so we augment the algo-
rithm with noise filtering to make it more robust [9]. 

RANDOM WALKS
Random walks treats an image as an undirected, N-connected
lattice (grid) with the adjacency matrix A. Each edge in the 
graph, Gij is weighted by the function 

Gij 5
2

1 1 exp5bdij6 ,  (1)

where dij  is the normalized 
Euclidean distance between 
two color vectors. The distance 
function is normalized so that 
0 # dij # 1, to make the algo-
rithm invariant to the data 

being processed. Therefore, the operation of the algorithm is 
not dependent on the type of data being sent to it. 

As stated in [7], the random walks algorithm is simply the 
solution to the linear system 

Lu x
S

5 b
S

,  (2)

where L 5 deg 1A 2 2 A, i.e., the Laplacian matrix of the image 
graph and Lu is the submatrix for just the unknown nodes. 
The vector, xS, is the vector of unknown values and b

S
 is the 

boundary vector. The boundary vector is defined as 

b
S

5 2 Lb s
S

,  (3)

where sS  is the vector containing the initial (i.e., boundary) 
values of known nodes. Once the linear system has been 
solved, the resulting vector xS  contains the likelihood of each 
pixel being a member of the foreground or background. We 
refer to this as a potential map, denoted by P 3x, y 4. Please 
refer to [7] and [8] for a full derivation of the algorithm. 

EXTENSION INTO SCALE SPACE
To improve the performance of the algorithm in noisy condi-
tions, we extend the algorithm so that it operates on a scale 
space. Scale space is a form of multiresolution signal analysis 
where the signal is filtered through a series of isometric 
Gaussian kernels [10]. This allows the analysis of the image 
across multiple scales so that structures of varying size can 
be examined. 

A useful property of scale space is that it preserves overall 
structure across multiple scales. Therefore, it becomes possi-
ble to use scale space to preserve overall image structure while 
also filtering out noise. We do this by generating a NS-scale
scale space, S, for some set of scales, s, and linking them in a 
3-D structure as shown in Figure 2. 

Random walks is then applied to this 3-D structure, pro-
ducing a potential map for each scale in the scale space. This 
potential scale space, P, is reduced to a single potential map 
through the use of a geometric average such that 

Start Point

Tangent In

Tangent Out

End Point

[FIG1] An example of a parametric curve. The arrows indicate 
the curve direction while the dashed lines indicate the tangents 
at the control points.

A KEY CONSIDERATION 
FOR ANY ROTOSCOPING ALGORITHM 

IS HOW IT TREATS THE CONTROL POINTS 
LAID DOWN BY THE ARTIST.
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P 3x, y 45 aq
NS21

i50
P 3x, y 0 i 4b1/NS

,  (4)

where P 3x, y|k 4  is the potential map at scale k. We refer to this 
augmented algorithm as scale-space random walks (SSRW). 

ROTOSCOPE LABELING
A key consideration for any rotoscoping algorithm is how it 
treats the control points laid down by the artist. Our method 
respects these points by generating a labeling in such a way that 
the location of curve is free to vary but the points may not. 
Figure 3 shows how this labeling is constructed. 

It should be noted that while 
the presented labeling assumes 
a linear interpolation between 
the two control points, this 
does not, in fact, have to be the 
case. If the curve is not linear 
then the unknown region simply follows curve. This allows the 
artist not to have to use an arbitrarily large unknown region for 
a curved shape. 

Consider the trivial example presented in Figure 4(a). Here, 
the control points are not on the boundary so the estimated 
curve at those points is erroneous but the remainder of the 
curve is not. Figure 4(b) shows the result when the control 
points are on the boundary. As expected, there is no error in 
the boundary. 

The returned potential maps, shown in Figure 5, show how 
this labeling produces these results. 

In effect, this labeling acts very much like the conventional 
trimap used in image segmentation and alpha matting algo-
rithms. The difference, however, is that control points are 
respected due to the “pinching” at those points. 

In cases where an image has been corrupted by noise, we 
use SSRW rather than random walks. Noise may result from 
either limitations in the technology used to capture the data, 
such as the low-cost complimentary metal-oxide-semiconduc-
tor sensors inside of cell phone cameras, or being added 
intentionally for artistic effect, such as film grain. Figure 6 
shows how SSRW can be used to significantly improve the 
segmentation quality on an image corrupted by Gaussian 

noise with a variance of 0.01 
and a mean of zero. 

Applying this labeling to an 
entire path (i.e., a collection of 
points and their connecting 
curves) is trivial. Each curve in 

the path can be treated independently of every other curve and, 
as such, the labeling is simply applied to each curve. Figure 7 
shows how this is achieved. 

The purpose of this labeling scheme is primarily for ease 
of use. The labeling operates on the path laid down by the 
rotoscoping artist. Therefore, the artist does not require any 
specialized training to use this assisted rotoscoping method. 
In fact, the artist merely has to be familiar with the applica-
tion used for the rotoscoping. The assisted rotoscoping 
method can then be implemented as a plug-in inside of 
that application. 

(a) (b)

[FIG5] Potential map for the segmentations shown in Figure 4: 
(a) erroneous control points and (b) accurate control points.

Foreground

Background

Control
Point

Tolerance

[FIG3] Labeling used for assisted rotoscoping.

(a) (b)

[FIG4] Segmentation results for accurate and inaccurate control 
points: (a) erroneous control points and (b) accurate control points.

A USEFUL PROPERTY OF SCALE SPACE 
IS THAT IT PRESERVES OVERALL 

STRUCTURE ACROSS MULTIPLE SCALES.

Coarse Detail Scale

Fine Detail Scale

[FIG2] Scale-space graph structure.
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The fact that this rotoscop-
ing method can be easily 
implemented as a plug-in 
should not be downplayed. 
Many of the tools used by 
rotoscoping artists, such as 
keyframing, curve creation/
editing, and so forth, are non-
trivial to implement. Commercial compositing applications 
provide much of this functionality for “free,” making them 
desirable as part of an implementation.

GPU IMPLEMENTATION
A useful property of linear algebra is that many calculations can 
be done in parallel. A canonical example is the dot-product 
between two D-dimensional vectors xS  and yS, defined as 

x
S # y

S
5 a

D21

i50
xi yi. (5)

Computing a dot-product requires D 1D 2 1 2  operations mak-
ing it O 1D2 2  in time on a serial processor where each operation 
has be done sequentially. However, on a multicore processor 
[such as a graphics processing unit (GPU)], operations can be 
done in parallel. Therefore, the dot-product is decomposed into 
two stages. 

First, the vectors are multiplied in a pair-wise fashion to pro-
duce an intermediary vector, zS, such that 

zi 5 xi yi. (6)

Because the multiplication is pairwise, each element can be 
computed in parallel. To find the value of the dot-product, z

S
 is 

“reduced” by summing pairs of elements to produce a new vec-
tor, z

S
1/2, half the length of z

S
. This is repeated until the result-

ing vector is of length one (Figure 8). This procedure, known as 
a parallel reduction [11], is an O 1 lg D 2  operation. 

Note that even though the same number of operations are 
being performed, the time complexity has dropped significant-
ly due to the parallel nature of the processor being used. This 
makes parallel processors an attractive option for implement-
ing these types of calculations. The GPU is simply one type of 
parallel processor and this reasoning can easily be extended to 
field-programmable gate arrays, multicore central processing 
units (CPUs), or any other multiprocessor architecture. 

More complex calculations, such as matrix-vector and 
matrix-matrix multiplication, can also be sped up in a manner 
similar to a parallel reduction. The key is identifying what oper-
ations are independent and which ones are dependent. Even 
very complex operations, such as solving a linear system can be 
broken down into smaller, simpler operations that can be imple-
mented in a parallel fashion.

LINEAR SYSTEM SOLVER
While there are a number of different methods for solving a 
linear system, we chose to use the conjugate gradient method 

(CGM) [12] for a number of 
reasons. First, it has relatively 
low memory requirements. 
This is important when con-
sidering a GPU implementation 
since the memory require-
ments are quite strict. Second, 
it has seen an early GPU imple-

mentation [13], where 3-D graphic libraries were used rather 
than a dedicated application programming interface such as 
Compute Unified Device Architecture (CUDA). Finally, it has 
already been used in a previous random walks implementation 
[7]. For these reasons, the CGM was a natural choice as the 
system solver. 

The CGM itself is composed of vector-vector additions, 
dot-products, and matrix-vector multiplications. The algo-
rithm is iterative, meaning that the solution is incrementally 

(a) (b)

[FIG6] Segmentation of a noisy image using random walks and 
SSRWs: (a) random walks and (b) SSRWs.

Inside of Object

Outside of Object

Original Spline
Curve i

Curve i + 1
Curve i + 2

[FIG7] Application of the labeling shown in Figure 3 to an 
entire path.

+
+

+ z0 + z1 + z2 + z3

z0

z1

z2

z3

[FIG8] Example of parallel reduction.

MORE COMPLEX CALCULATIONS, 
SUCH AS MATRIX-VECTOR AND MATRIX-
MATRIX MULTIPLICATION CAN ALSO BE 
SPED UP IN A MANNER SIMILAR TO A 

PARALLEL REDUCTION. 
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updated until some error term has been minimized. When 
performing the CGM, there are three basic stages: compute 
the solution, calculate the error in the solution, and deter-
mine how best to update the solution. Because these three 
stages are sequential, the entire CGM cannot be implement-
ed in a parallel fashion. 

However, because the CGM is composed of easily parallel-
ized vector operations, it can still benefit from a GPU imple-
mentation. What a parallel implementation will do is speed up 
the individual operations and not the CGM itself. In other 
words, given the same system, a serial processor and a multi-
core processor will still take the same number of iterations to 
complete. However, the parallel version will complete those 
iterations faster since the individual operations themselves are 
executing much more quickly. 

APPLICATION PLUG-IN
The assisted rotoscoping method was implemented as a plug-
in to Adobe After Effects, a popular compositing application. 

After Effects was able to han-
dle the generation of the 
rotoscoping paths and the 
animation of the control 
points. It also presented an 
efficient way to read and write 
image data. Figure 9 shows a 
screen capture of the plug-in 
operating in After Effects. 

The plug-in is designed to 
present a natural interface to 
the artist. The artist can lay 
down their curves without 
having to be specifically con-
cerned with the plug-in itself. 
Once the plug-in is loaded, 
the artist is presented with an 
overlay that displays the width 
of  the unknown region 
[Figure 10(a)]. By using the 
provided controls, the artist is 
able to adjust the width before 
generating the final mask 
[Figure 10(b)]. While not 

shown, it is possible for the  artist to also view the probabilities 
that generated the particular segmentation. 

All of the back-end processing (i.e., solving the SSRW sys-
tem) was all done through Nvidia’s CUDA library. We chose 
this library since it is well supported and CUDA-enabled 
graphics cards are common. This was a pragmatic choice and 
does not preclude the use of other libraries, such as the 
cross-platform OpenCL. A future implementation may use 
OpenCL since it is designed to take advantage of any multi-
core hardware, be it CPU or GPU. 

For implementation reasons, we developed our own linear 
algebra routines but libraries have been developed so a user 
does not have to start programming from scratch. For exam-
ple, the MAGMA project [14] is a dense linear algebra solver 
that is being developed to operate across multiple architectures 
while CULA [15] is a linear algebra library developed specifical-
ly for CUDA. As multicore processors become more prevalent, 
more and more libraries will be developed. 

The actual performance is heavily dependent on the length 
of the curve and the hardware being used. Intuitively, the longer 
the curve, the more nodes that need to be solved for. Similarly, 
more powerful GPUs contain more processing cores, allowing 
for more elements to be processed in parallel. As a result, the 
individual calculations are faster and the algorithm converges 
more quickly. 

Currently, the plug-in processes each curve in the path 
sequentially. For example, if the original mask is composed of 
five curves and if each curve takes a relatively quick 250 ms to 
process, then processing the entire path (all five splines) will 
take 1.25 s. The majority of the delay in user interaction actually 
results from this implementation choice. Therefore, even if the 

[FIG9] Screen capture of the plug-in.

[FIG10] Plugin operating modes: (a) edit model and 
(b) mask model.

(a) (b)
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average computation time per 
segment is small, the overall 
computation time increases lin-
early with the number of curves 
in the path. This delay is very 
noticeable and can dramatically 
slow down a user’s workflow. 

However, by recognizing each curve is independent from 
every other curve, all of the linear systems for each of the N
curves, L1, L2, c, LN,  can be combined into one “super- 
system,” Lr, such that 

Lr 5 £
L1

c 0

( Li (
0 c LN

§ . (7)

This system can then be solved using the CGM as before. The 
difference is now that all of the curves (i.e., the entire path) will 
be computed in parallel, providing a significant speedup. We 
intend to apply this optimization to future implementations of 
the plug-in.

CONCLUSIONS
We have shown how a multicore processor can be used in a 
practical application that is transparent to the user. Through 
CUDA, we used the processing power contained in a GPU to 
accelerate an assisted rotoscoping algorithm. Furthermore, 
using a GPU means that no special hardware is required by 
the end user. Because GPUs are present in most commercially 
sold computers, leveraging their computational power is 
highly desirable. 
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MATLAB for Signal 
Processing on 
Multiprocessors and 
Multicores

[Siddharth Samsi, Vijay Gadepally, and Ashok Krishnamurthy]

M
ATLAB is a popular 
choice for algorithm 
development in signal and 
image processing. While tra-
ditionally done using sequen-

tial MATLAB running on desktop systems, in recent 
years there has been a surge of interest in running 
MATLAB in parallel to take advantage of multiprocessor and 
multicore systems. In this article, we discuss three variations 
of multiprocessor parallel MATLAB, two of which are available 
as commercial, supported products. We also consider running 
MATLAB with key computations speeded up using multithread-
ed computations on multicore general-purpose graphical pro-
cessing units (GPGPUs). Two signal processing kernels (fast 
Fourier transform (FFT) and convolution) and two full applica-
tions [synthetic aperture radar (SAR) imaging and supercon-
ducting quantum interference devices (SQIF)] are used to 
illustrate the use of parallel MATLAB.

INTRODUCTION
Developments in microprocessor technologies have resulted in 
most processors having multiple computing cores in a single 
chip. As a result, today’s distributed memory high-performance 
computers (HPCs) have multiple central processing units 
(CPUs) (2–4) in each node, with each CPU having multiple cores 
(2–8). The typical programming methodology for such distrib-
uted memory HPCs is using some form of a message passing 
paradigm, typically message passing interface (MPI). On the 
other hand, GPGPUs and graphics processing units (GPUs) are 
emerging as an alternative architecture for many computation-
ally intensive tasks, including signal processing. GPGPUs have  Digital Object Identifier 10.1109/MSP.2009.935421
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large number of processor cores 
(up to 240 in some NVIDIA 
GPUs) and are typically pro-
grammed using threads. 
MATLAB is a popular choice for 
algorithm development in signal and image processing, and it 
has been traditionally used on desktop systems. Parallel MATLAB 
has been actively developed over the past several years, and 
there are several commercial and academic versions available 
[1]–[5]. Using MATLAB with GPGPUs is a relatively recent 
development, and the products are not as well developed. The 
options for multicore GPGPUs are the following: a) create and 
compile CUDA-based MATLAB executable (MEX) functions [6] 
or b) use MATLAB add-ons such as Jacket [7] or GPUmat [8], 
which aim to accelerate MATLAB functions. Signal processing 
algorithm developers who use MATLAB need to know the differ-
ent options and tradeoffs to stay productive. 

In this article, we walk the reader through the following dif-
ferent multiprocessor MATLAB choices: 

Parallel Computing Toolbox (PCT) and the MATLAB  ■

Distributed Computing Server (MDCS) [9]
Star-P from Interactive Supercomputing Inc.  ■ [10] 
pMATLAB/bcMPI from MIT Lincoln Laboratories/Ohio  ■

Supercomputer Center (OSC) [11], [12]. 
We then look at different multicore MATLAB choices for a) 

CUDA-based MEX functions and b) MATLAB add-ons. For each 
of these technologies, we compare individual programming 
effort and performance improvements observed with popular 
signal processing kernels and applications. The main message 
for the reader is that it is possible to exploit today’s multicore 
and multiprocessor systems to effectively simulate signal pro-
cessing problems that are large in memory and/or computation 
requirements, while staying in the familiar MATLAB environ-
ment. The required changes to sequential MATLAB code are 
usually quite small and can be performed with ease. As the mul-
ticore and multiprocessor implementations reported in this 
article have been carried out on different systems and for differ-
ent problem sizes, the results are not  compared directly. 

MULTITHREADING IN MATLAB
The simplest approach to leveraging multiple processor cores in 
MATLAB is through the use of multithreading. Since MATLAB 
supports multithreading natively [13], this approach is a simple, 
nonintrusive way to leverage multiple cores on a system. This 
type of multithreading can be broadly compared to the OpenMP 
[14], [15] approach to parallelism. The built-in multithreading 
in MATLAB does not require any intervention on the part of the 
user and is enabled by default. However, the maximum number 
of parallel threads cannot exceed the number of cores available 
on the system. The performance gain obtained by using multiple 
cores on a single system are also limited and vary based on the 
specific computation as well as the data size. Figure 1 illustrates 
this point. On a 16-core system, a maximum speedup of slightly 
over seven was seen for the multiplication and sqrt operations. 
Conversely, the trigonometric function sin() has a speedup of 

slightly under three. This test 
was performed on a four-socket 
quad core AMD Opteron-based 
system with 64 GB of RAM run-
ning Red Hat Enterprise Linux. 

While multithreaded computations are the easiest entry into 
parallel computing with MATLAB, performance gains are usual-
ly limited. This approach should only be viewed as a first step in 
improving the code performance. 

MULTIPROCESSOR MATLAB
The most common approach to overcoming the performance 
limitations of sequential MATLAB involves distributing an 
 application over multiple nodes of a commodity computing 
cluster. Typical performance limitations for sequential MATLAB 
can be broadly classified into two areas: capacity and capability. 
The problem of capacity manifests itself as the inability for exist-
ing hardware and software to perform the desired computations 
in a practical amount of time. For example, this can include 
parameter sweeps that may take days or weeks that thus limits 
the range of analyses performed. Similarly, the data being 
 collected may be so large that it is not feasible to analyze the 
complete data set in any reasonable manner. In these cases, 
while the existing hardware and software are capable of per-
forming the desired analysis, it may not be practical to run the 
entire computation. The problem of capability is brought about 
by the actual physical limitations of the system. Thus, issues 
related to the total memory on a system or processor speeds 
may limit the amount of analysis performed. While this problem 
can be solved in a limited way by system upgrades, there is an 
upper limit to this approach that is dictated by technology and 
cost factors. In the case of such problems, the problem may be 
split up into smaller, more manageable chunks that can be per-
formed in parallel. 

PARALLEL COMPUTING TOOLS FOR MATLAB
There are several options for leveraging the availability of multi-
ple processors and multiple cores to solve the performance limi-
tations in serial MATLAB. These range from utilizing multiple 

[FIG1] Relative speedup using 16 threads on a 16-core, four-
socket system with the built-in multithreading in MATLAB. 
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cores on a single processor to 
leveraging hundreds of proces-
sors on a HPC-distributed 
memory cluster to split up the 
problem. Based on the type of 
analysis being done, one or 
more of the approaches may be 
ideally suited to the problem. In 
[1] and [5], the authors high-
light various tools currently available for  parallel computing in 
MATLAB. While these tools have been designed to minimize 
programming complexity, in our experience, three multiproces-
sor MATLAB technologies stand out in terms of user base, user 
support, and active development: pMATLAB+bcMPI, Star-P, and 
the PCT with the MDCS. These toolboxes enable users 

to  parallelize algorithms in 
MATLAB using an embarrass-
ingly parallel approach or 
through the use of  distributed 
arrays/matrices and (with the 
exception of Star-P), implicit 
message passing between multi-
ple MATLAB processes running 
on different processors. 

pMATLAB+bcMPI:1)  bcMPI is an open-source software library 
that is developed by the OSC. bcMPI provides an alternative to 
MatlabMPI [16] and is geared towards large shared supercom-
puters. bcMPI interfaces with pMATLAB [17] from MIT Lincoln 
Laboratories, which supports distributed arrays. The combina-
tion of pMATLAB and bcMPI is denoted as pMATLAB+bcMPI. 

pMATLAB+bcMPI uses a layer of 
abstraction beyond traditional MPI calls 
and reduces programming complexity 
when compared to traditional 
MatlabMPI programs. Figure 2 shows 
the architecture of bcMPI.

PCT:2)  The PCT with the MDCS are 
commercial products offered by 
The MathWorks. 
 The PCT provides the ability to run 
up to eight MATLAB processes on a sin-
gle system without the use of the 
MDCS. It thus provides a convenient 
environment to develop and test parallel 
MATLAB code locally and then scale up 
the same code to much larger scales on 
a large computing cluster through the 
use of the MDCS as shown in Figure 3. 

Star-P:3)  Star-P is a client-server par-
allel computing platform for MATLAB 
available from Interactive Super-
computing. Star-P supports  fine-grained 
parallel as well as embarrassingly paral-
lel modes of operation. However, Star-P 
does not provide functionality for 
explicit message passing between the 
processes running in parallel. Any 
required interprocessor communica-
tion is performed by the software itself 
without any intervention from the 
user. Figure 4 shows the architecture 
of Star-P.

MULTIPROCESSOR APPROACHES
Parallel computing in MATLAB consists of 
splitting up the problem across multiple 
processors or multiple compute nodes in 
a variety of ways. This section discusses 
the different approaches used and illus-
trates each approach with an example. 

[FIG2] Architecture of pMATLAB/bcMPI from MIT Lincoln Laboratories and OSC.
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[FIG3] Architecture of PCT and MDCS from The MathWorks.
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EMBARRASSINGLY 
PARALLEL APPROACH
The embarrassingly parallel approach is 
quite common in practice and arises when 
a problem can be split into a number of 
independent tasks or computations that 
can be completed in an order-independent 
manner. For example, one may wish to 
analyze the effectiveness of an algorithm 
on a given data set by varying the parame-
ters of the algorithm over a wide range. In 
such cases, each parameter set can be 
farmed out to a different processor, thus 
reducing the total time required to com-
plete the entire analysis. Similarly, multi-
ple, independent data sets stored in 
separate files can be analyzed in parallel 
by splitting up the work across multiple 
processors. 

THE parfor() COMMAND
The PCT provides a simple way to paral-
lelize MATLAB for-loops. The parfor()
[9] command can be used to distribute 
the individual loop iterations across processors without any 
additional code modifications. This construct is suited for 
loops in which the computations are order independent. Let 
us consider the following simple algorithm for calculating p:

Initialize a counter to zero.  ■

Generate two independent random numbers,  ■ x and y that 
are uniformly distributed between zero and one. 

If the point ( ■ x, y) lies inside the unit circle, increment 
counter. 

Repeat above two steps  ■ N time, where N is some very large 
number .

Calculate ■ p using the formula 2 p5 14*N 2 /count. 
The above algorithm can be written in MATLAB as shown 

in Table 1. 
This algorithm is embarrassingly parallel and can be easily 

parallelized through the use of the parfor function provided 
by the PCT. By simply changing the for to parfor, the algo-
rithm can be run on multiple processors, assuming that some 
preconditions are met. For full details on using the parfor
construct, readers are referred to the toolbox documentation 
and the work in [18]. In a similar manner, suppose one needs 
to run the same image analysis algorithm on a large set of 
images, a for-loop can be used to process all the files and 
can be parallelized by using the parfor command. 

USING DISTRIBUTED ARRAYS
A second approach to parallel computing in MATLAB is 
through the use of distributed arrays/matrices. The concept 
of distributed arrays/matrices is based on the partitioned 
global address space (PGAS) programming model in which 
multiple processors share a global address space [18] and 

each processor can read to/write from any section of the 
global address space [19]. The data being processed is thus 
distributed across multiple processors, with parts of the data 
being local to each processor. This distribution of data also 
enables the use of large data structures that may not be prac-
tical on a single processor. 

In a similar manner, the different parallel MATLAB tech-
niques discussed here enable the user to create and manipulate 
arrays/matrices in MATLAB that are distributed across multiple 
processors or on a cluster of computers. For example, the PCT 
allows the creation of distributed arrays/matrices by concate-
nating matrices that reside on different processors, by distrib-
uting a large matrix that initially exists on a single processor, or 
by using custom constructors provided by the toolbox. 
Similarly, Star-P enables the distribution of matrices through 
the use of the *p construct. One of the biggest advantages of 
this approach to parallel computing is that the data distribution 
is handled by the underlying library. The programmer does not 
need to know where the data actually resides and can focus on 
the actual algorithm. 

[FIG4] Architecture of the Star-P system from Interactive Supercomputing (recently 
acquired by Microsoft).
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[TABLE 1] CALCULATING p: SEQUENTIAL AND PARALLEL
IMPLEMENTATION USING PARFOR().

count = 0;
for k = 1:N
  p = rand(1, 2);
  if sqrt(sum(p.ˆ2)
< 1
  count = count+1;
  end
end
pival = 4*count/N;

count = 0;
parfor k = 1:N
  p = rand(1, 2);
  if sqrt(sum(p.ˆ2)
< 1
  count = count + 1;
  end 
end
pival = 4*count/N; 
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Table 2 shows an example of 
a parallel two-dimensional 
(2-D) convolution using 
pMATLAB+bcMPI. The first 
step in this approach is to cre-
ate a map that defines the dis-
tribution of the data. In this 
example, the map  function 
defined by pMATLAB is used to 
distribute the rows of the ran-
dom matrix data across Np number of processors. Each pro-
cessor then performs a convolution on the part of the data that 
resides in its local memory and puts the results back into the 
global address space. Figure 5 shows the reduction in the total 
compute time for a 2-D convolution kernel on a matrix of size 
1,024 3 1,024. 

Table 3 shows an example of a 2-D FFT operation on a dis-
tributed matrix using Star-P. The code also illustrates the ease 
with which Star-P can be used to create distributed arrays by 
using the “*p” construct. An N 3 N distributed matrix is creat-
ed using the MATLAB function rand and the FFT can be calcu-
lated by simply calling the overloaded fft2() function. 

Figure 6 shows the run times for a parallel 2-D FFT using 
Star-P for varying data sizes. The parallel algorithm was run on 
four systems each having a four-core AMD Opteron processor, for 
a total of 16 cores. It can be seen that for small problem sizes, the 
parallel implementation is actually slower. This is because of the 
large amount of interprocessor communication that has to occur 

when the matrix is transposed. 
This also illustrates one of the 
pitfalls that users must be aware 
of when using distributed matri-
ces. Algorithms must be 
designed so as to minimize 
 redistribution of data that can 
lead to a reduction in perfor-
mance due to excessive commu-
nication between processors. 

FINE-GRAINED PARALLELISM
The third approach to parallelism involves the use of message 
passing similar to the traditional parallel programming para-
digm. Programmers can control algorithm flow, exchange data 
between different instances of MATLAB running on different 
processors, and distribute the analysis through explicit message 
passing between the MATLAB processes. This approach gives the 
programmer maximum control over the parallel implementa-
tion of the algorithm, but it can be most time consuming to 
develop and test. 

The approach to fine-grained parallelism leverages the MPI 
programming paradigm. The MPI standard [20] defines the lan-
guage bindings for point-to-point message passing, collective 
communication, process creation and management and several 
other protocols required for the message passing parallel pro-
gramming model [21]. bcMPI and the PCT offer MPI bindings 
for MATLAB. These bindings include the basic MPI functions 

[FIG5] Multiprocessor versus sequential run time for 2-D 
convolution: Performance of parallel 2-D convolution on 
multiprocessor system using pMATLAB+bcMPI.
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[TABLE 3] PARALLELISM USING DISTRIBUTED ARRAYS: 
PARALLEL 2-D FFT USING STAR-P.

N = 1024;
x = rand(N, N*p);
X_fft = fft2(x);
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[FIG6] Multiprocessor versus sequential run time for 2-D FFT: 
Run-time curves obtained by varying problem size and 
parallelized using Star-P.

[TABLE 2] PARALLELISM USING DISTRIBUTED ARRAYS: 
PARALLEL 2-D CONVOLUTION USING PMATLAB+BCMPI.

dist_map = map([Np 1], {}, [0:Np-1]);
data = rand(4000, dist_map); 
locData = local(data); 
locData = conv2(locData, H, ’same’);
data = put_local(data, locData);

RESEARCHERS CAN EXPLOIT MULTICORE 
AND MULTIPROCESSOR SYSTEMS 

TO SIMULATE SIGNAL PROCESSING 
PROBLEMS WITH LARGE MEMORY 

AND/OR COMPUTATION 
REQUIREMENTS FROM THE FAMILIAR 

MATLAB ENVIRONMENT. 
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that enable point-to-point com-
munication between the 
MATLAB processes running 
in parallel. 

Table 4 shows an example of 
point to point communication 
between multiple processors. 
In this example, all processors with rank greater than zero send 
their local data to the rank zero processor using the MPI_Send
command, which is then received by the rank zero processor 
when it calls the MPI_Recv command. It should be noted here 
that deadlocks can occur if a processor sends data without a 
corresponding MPI_Recv from the intended recipient. This is 
one of the major aspects of fine-grained parallelism that pro-
grammers must be careful to address. 

MATLAB ON GPGPUS

Another technique for speeding up sequential MATLAB code 
involves using the multiple cores of CPUs and/or GPGPUs for 
multithreaded computing. The main difference between this 
form of parallel MATLAB and multiprocessor MATLAB is that 
multicore MATLAB uses threading as the underlying parallel 
computing mechanism. Currently, there are two examples of 
multicore architectures: conventional multicore CPUs (typical-
ly with two eight-cores) and unconventional multicore proces-
sors such as GPGPUs (with tens or hundreds of cores). For the 
purpose of our discussion, we will concentrate on the utiliza-
tion of multiple cores of GPGPUs. This form of parallel MATLAB 
is relatively new and the number of options available is limited. 

GPUS

Recent trends in hardware development have led to GPUs evolv-
ing into highly parallel, multicore computing platforms. 
Current GPGPUs such as the Quadro FX 5600 have 128 cores 
and newer hardware such as the Tesla platform from NVIDIA 
can contain up to 240 processing cores per graphics card. 

CUDA is a parallel programming model and software envi-
ronment developed by NVIDIA that enables programmers to 
take advantage of the multicore GPGPU with standard program-
ming languages [6]. CUDA provides extensions to the C pro-
gramming language that enable the programmer to write 
fine-grained parallel algorithms that can be executed using mul-
tiple, simultaneous threads on the GPGPU. Recent work [22]–
[24] has shown the performance gains possible through the use 
of CUDA to accelerate a variety of algorithms. 

The CUDA programming model enables programmers to run 
fine-grained parallel code by launching multiple threads on the 
GPGPU. The threads are divided into blocks that can be sched-
uled to run independently across the GPGPU compute cores. 
The ability to schedule and run multiple threads simultaneously 
enables code scalability with the number of cores. Complete 
details on the CUDA programming model can be found in [6]. 

As shown in Figure 7, the serial code running on the CPU 
invokes a computational kernel that is to be run on the 
GPGPU. Since the CPU and GPGPU memory spaces are 

distinct from each other, data 
to be used in the computations 
must be transferred to the 
GPGPU. This can be the major 
penalty incurred in the process 
and programmers must avoid 
unnecessary data transfer 

between the CPU and the GPGPU to avoid the performance 
penalty. The computational kernel is executed on the GPGPU 
through the use of grids that are comprised of multiple thread 
blocks each of which executes on a single multiprocessor. 

INTERFACING MATLAB WITH GPGPUS

Several toolboxes for MATLAB have been developed to allow the 
offloading of computations to the GPGPU by simply casting 
MATLAB data into the toolbox-defined GPGPU data type [7], [8], 
[25]. The availability of such toolboxes makes it very easy for 
researchers to try out GPGPU computing without having to 
write optimized C code that can take hours to develop and 
debug. Scientists can focus on the research without worrying 
about the intricacies of the C/CUDA programming paradigm. 
These toolboxes, however, are currently under development and 
may not support every MATLAB function. The most common 
functions supported include one-dimensional (1-D) and 2-D 
FFT, convolution, and standard mathematical operations. 

[TABLE 4] AN EXAMPLE OF FINE-GRAINED PARALLELISM 
USING BCMPI.

my_cpu = MPI_Comm_Rank(comm);)
if (my_cpu > 0) 
 tag = my_cpu; 
 MPI_Send(0, tag, comm, data); 
else
 globalsum = 0; 
 for k = 1:ncpu-1 
 tag = k; 
 data_k = MPI_Recv(k, tag, comm); 
 globalsum = globalsum + data_k; 
 end 
end

[FIG7] The GPU architecture.
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One approach to offloading computations to the GPGPU is to 
use the GPGPU to perform small kernels such as FFT, convolu-
tion, and FIR filtering, which are often the most time consum-
ing operations in an application. With this approach, the 
researcher can remain in the familiar MATLAB environment 
while running massively parallel algorithms transparently on 
the GPGPU. 

MATLAB PLUG-IN FOR CUDA
The MATLAB plug-in for CUDA available from NVIDIA’s Web site 
[26] provides the tools necessary to convert CUDA programs to 
MATLAB-callable MEX functions. The use of this plug-in allows 
programmers to write custom applications that are optimized 
for the given problem. This can be a challenging and time 
 consuming task due to the fact that the desired code must be 
written (often rewritten) in C. 

MATLAB TOOLBOXES FOR GPGPU COMPUTING
Currently, three toolboxes are available for the use of CUDA 
from MATLAB. The toolboxes are GPGPUmat [8], gpulib [25], 
(both available for free), and Jacket [7], which is a commercial 
product. Each of these toolboxes offers the ability to offload 
computations to the GPGPU by simply casting MATLAB data 
types to a toolbox provided GPGPU data type. The simplicity of 
using these toolboxes should be considered carefully because 
the code can incur heavy penalties due to data transfers between 
the main CPU memory and the GPGPU memory. 

CONSIDERATIONS FOR GPGPU COMPUTING
The use of GPGPUs for offloading computations brings addi-
tional considerations. The typical operating procedure for 
GPGPU computing consists of the transfer of data from the CPU 
to GPGPU memory when GPGPU functions are called. This 
transfer of data from the CPU to the GPGPU can lead to a per-
formance penalty. When writing CUDA programs, the program-
mer has significant control over the data transfers and the 
CUDA application should be carefully designed to minimize 
such transfers. In contrast, the premise of the MATLAB toolbox-
es available for GPGPU computing is that users can accelerate 
their code simply by casting the data to the GPGPU data-type 
and performing calculations as usual. However, this must be 
done carefully so as to avoid the penalty incurred during data 
transfers. For example, in our third scalable synthetic compact 

application (SSCA #3) described below, the FFT kernel is called 
multiple times in the algorithm. Using the GPGPU to offload the 
FFT calculations is an obvious path to speeding up the applica-
tion. However, it was observed that using the GPGPU did not 
provide the expected speedup. Upon closer examination and pro-
filing of the code it was observed that the FFT kernel was indeed 
faster on the GPGPU but the performance penalty incurred in 
the data transfers negated the gains. 

THE SSCA #3 APPLICATION
The SSCA #3 benchmark [27] from the Defense Advanced 
Research Projects Agency High Productivity Computing System  
Program [28], performs SAR processing. SAR processing creates 
a composite image of the ground from signals generated by a 
moving airborne radar platform. It is a computationally intense 
process, requiring image processing and extensive file I/O. The 
proposed solution to the SSCA #3 application uses a data paral-
lel approach to parallelization. The SSCA #3 application consists 
of signal processing kernels such as FFTs, convolutions, and 
interpolation. To parallelize the SSCA #3 application, the 
MATLAB profiler ran on the serial implementation. The profiler 
showed that 67.5% of the time required for computation is 
spent in the image formation function of Kernel 1 (K1). Within 
formImage, the function genSARimage is responsible for 
the computationally intense task of creating the SAR image. 
genSARimage consists of two compute-intensive parts, name-
ly, the interpolation loop and the 2-D inverse Fourier transform 
(IFT). In addition, multiple 1-D Fourier transforms are comput-
ed. The interpolation loop involves iteratively interpolating sec-
tions of the SAR raw image. The number of iterations is often in 
the tens of thousands, and each iteration contains multiple 
matrix multiplications and matrix additions. The 1-D and 2-D 
FFTs are carried out only once per genSARimage function 
call. The problem size (size of input image) can be increased by 
modifying the SCALE variable. For a SCALE value of ten, the 
time taken by K1 is approximately 200 s. Amdahl’s law [29] 
states that the maximum speedup of a parallel application is 
inversely proportional to the percentage of time spent in 
sequential execution. In our parallelization of SSCA #3, the 
function genSARimage, which accounted for 67.5% of overall 
execution time, was parallelized. The remaining execution time 
(32.5%) remains serial and, therefore, the theoretical speedup 
on p cores is 1/(0.325 1 (0.675/p)). The maximum speedup pos-
sible is about 3.0. 

Multiprocessor Implementation:1)  In the multiprocessor 
implementation, a matrix F (which is interpolated to give the 
output image, see Table 5) is distributed as contiguous blocks 
of columns across all processors. The code within the interpo-
lation loop remains functionally equivalent with the parallel 
version altered such that each processor performs its calcula-
tions on a smaller, local part of the global F matrix. After the 
interpolation loop, the 2-D IFFT is carried out through the 
usage of pMATLAB’s transpose_grid operation that changes 
the distributed F matrix from a column to row distribution. A 
snippet of the required changes are shown in Table 5 (for 

[TABLE 5] CODE SNIPPETS OF PMATLAB+BCMPI ADDITIONS 
FOR GENSARIMAGE().

SERIAL CODE PARALLEL CODE 

F = SINGLE(ZEROS(NX,M); 

SPATIAL = IFFT(IFFT(F, [], 2));

PFMAP = MAP([1 NCPUS], {}, 
[0:NCPUS-1])
PF = ZEROS(NX,M,PFMAP); 
PFLOCAL = IFFT(PFLOCAL, [],2); 
PF = PUT_LOCAL(PF, PFLOCAL); 
Z = TRANSPOSE_GRID(PF); 
ZLOCAL = IFFT(LOCAL(Z), [],1); 
Z = PUT_LOCAL(Z,ZLOCAL); 
Z = AGG(Z); 
SPATIAL = ABS(Z)’; 
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 variables of interest). The absolute performance times and 
relative speedups for image formation are given in Figure 8. 
 For this application, nearly 67.5% of the code was parallel-
ized by increasing the number of source lines of code by just 
5.5% (approximately 50 additional lines of code). 

GPGPU Implementation: 2) From the application analysis, it 
appears that using GPGPUs for these calculations would 
reduce overall computational time for SSCA #3. To investi-
gate this, the GPUmat toolbox was used to port the serial 
genSARimage function code to GPGPU enabled MATLAB 
code. This porting was a simple process, and required casting 
variables and matrices as GPUsingle data types. This casting 
moves the data from CPU memory to GPGPU memory. 
After enabling the GPGPU code, it was noticed that the over-

all execution time post-GPGPU porting was larger than the 
sequential (pre-GPGPU) run time. The MATLAB profiler was 
used to investigate this unexpected behavior. It was observed 
that as expected, functions such as FFTs, matrix multiplications, 
etc. showed a large reduction in computation time when using 
the GPGPUs. Results obtained before and after GPGPU porting 
for certain functions are listed in Table 6. 

However, additional overhead due to communication between 
CPU and GPGPU was also observed. This overhead caused an 
increase in overall run time for the GPGPU enabled code. 
Examples of large overhead components are shown in Table 7. 

Due to these additional components (which are not present 
in the pre-GPGPU code) extensive modifications would be 
required to efficiently use GPGPUs. 

THE SQIF APPLICATION
Superconducting quantum interference devices (SQUIDs) and 
arrays of SQUIDs or SQIFs have a wide variety of applications 
[30]. SQUIDs are the world’s most sensitive detectors of mag-
netic signals (sensitivity femto-Teslas) and are used for the 
detection and characterization of signals small enough to be vir-
tually immeasurable by any other known sensor technology. 
They have applications in the detection of buried facilities from 
space, and the detection of weak signals in noise limited envi-
ronments. The SQIF application is intended to solve large scale 
problems for the study and characterization of interference pat-
terns, flux-to-voltage transfer functions, and parameter spread 
robustness for large SQIF loop size configurations and SQIF 
array fault tolerance. The technical background for the SQIF 
application can be found in [30]. The particular application 
developed was intended to run the SQIF program in an opti-
mized fashion to either reduce run time and/or increase the size 
of the problem being solved. The SQIF application involves itera-
tively solving ordinary differential equations as outlined in [30]. 
Application of the MATLAB profiler on the SQIF application 
using 100 SQUIDs yielded a run time of approximately 20 min. A 
detailed analysis showed most (approximately 88%) of the time 
spent in the function evaluations for the differential equation. 
Optimization was carried out on this function. Further review of 
the profiler results showed a linear increase in the time taken by 
the code as the number of SQUIDs was increased. Results of the 

multi processor approach were obtained using pMATLAB+bcMPI 
on the OSC’s AMD Opteron “Glenn” cluster. 

The SQIF application was also parallelized using CUDA and 
results are discussed in the following sections. Since the GPGPU 
computations are performed in single precision while the 
MATLAB computations are in double precision, direct compari-
sons between the two is not strictly valid. However, the perfor-
mance numbers of each technology help illustrate the gains 
possible. The multicore GPGPU implementation requires a sig-
nificant amount of programming effort for the large gains 
observed and this is a tradeoff that must be evaluated before 
choosing the technology to be used. 

Multiprocessor Implementation:1)  At its core, the SQIF appli-
cation involves solving a partial differential equation over a 
desired time range. At each time step, flux is calculated for each 
SQUID element in a vector based on its adjacent neighbors. 
Thus, in a fine-grained parallel implementation, each processor 
needs only one data point from its left and right neighbors. 
Figure 9 shows the idea behind the fine-grained parallel 

[TABLE 6] RUN TIMES BEFORE AND AFTER GPGPU 
PORTING.

OPERATION PRE-GPU TIME (S) POST-GPU TIME (S) 

INTERPOLATION 45.54 18.18
WINDOWING 24.91 11.18
2-D FFT 1.64 0.36

[TABLE 7] GPGPU DATA TRANSFER OVERHEAD.

OPERATION OVERHEAD TIME (S)

DELETING GPU SINGLE 17.7
ASSIGNING GPU SINGLE 13.6
SUBSCRIPTING GPU SINGLE 10.2

[FIG8] Multiprocessor results for SSCA#3 application: Speedup of 
SSCA#3 for a fixed scale (SCALE=6), and parallelized using 
pMATLAB+bcMPI.
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 implementation in MATLAB. 
As shown in the figure, the 
input data of length n is dis-
tributed across P processors 
with an overlap of one data 
point with each neighbor. 
The first and last elements of 
the output data are special cases and are calculated separately. 

 At the beginning of the evalu-
ation of the differential equa-
tions, input data is distributed 
across P processors with the 
required overlap. At each step of 
the differential equation evalua-
tion, a small amount of data 

exchange occurs between processors. For example, as shown 
in Figure 9, Processor 2 receives data from Processor 1 and 
sends data to Processor 3. In the pMATLAB implementation, 
this communication must occur across different compute 
nodes of the cluster over the Infiniband network. While the 
Infiniband network offers bandwidths up to 10 GB/s, the 
communication overhead can add up as the number of pro-
cessors is increased. The key to achieving a good speedup is 
to ensure that the computation/communication ratio is 
large. The time required for the SQIF application increases 
nonlinearly as the number of devices being simulated 
increases as shown in Figure 10. 

Multicore Implementation Using CUDA2) : As described in 
the previous section, the SQIF application can see the most 
performance gains from a fine-grained parallel implementa-
tion of the algorithm. In this approach, while each processor 
performs most of its calculations independently, it needs to 
exchange data with at least one processor. The CUDA imple-
mentation of the SQIF application involved a translation of 
the MATLAB code into CUDA-enabled C code. In this imple-
mentation, hundreds of threads are launched on the GPGPU 
for performing the calculations. For a simple comparison, 
each thread can be considered as a single MATLAB process 
used in the pMATLAB implementation. The main difference 
here is that each thread only calculates a single data point in 
the output. Since the entire algorithm data also resides on 
the GPGPU, the overhead necessary to access the memory is 
significantly lower than the overhead in communicating 
over the network interface in the pMATLAB implementation. 
The CUDA implementation in this case was a simple imple-
mentation without any application specific optimizations. 
Even with this naïve implementation, a speedup of almost 
28 was observed when simulating 3,600 devices. Figure 11 
shows the run time and speedup achieved through the 
CUDA-based parallelization. The same plot also shows the 
run time for the CPU-based implementation on a single 
four-core AMD Opteron-based system. The GPGPU speedup 
observed is relative to the run time for the CPU-based 
 serial implementation. 

CONCLUSION
In this article, we have described how to speed up MATLAB code 
for signal processing kernels and applications using multiple 
processors and multicores. The examples illustrate when speed-
ups in processing time can be expected, and we provided guide-
lines on how to proceed with the code parallelization. We 
provided code snippets to illustrate the additional programming 
required and compared the performance when ported to run on 

[FIG10] Multiprocessor run time for SQIF application: For varying 
NSquids and using bcMPI+pMATLAB.
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distributed memory HPC clusters and commodity GPGPUs. The 
two applications show that one can take advantage of parallel-
ism attained by using multiple CPU cores as well as the GPGPU. 
We also examined the use of currently available toolboxes for 
running MATLAB code on the GPGPU without the need for 
reprogramming algorithms in CUDA. Researchers now have 
access to a variety of interesting computer architectures that 
can be leveraged for significant performance gains. No single 
approach may be optimal for all types of applications and the 
choice of the appropriate approach to parallelization should be 
made based on the user requirements. 
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A Survey of Medical 
Image Registration on 
Multicore and the GPU

I
n this article, we look at early, recent, and 
state-of-the-art methods for registration of 
medical images using a range of high-perfor-
mance computing (HPC) architectures including 
symmetric multiprocessing (SMP), massively multi-

processing (MMP), and architectures with distributed memory 
(DM), and nonuniform memory access (NUMA). The article is 
designed to be self-sufficient. We will take the time to define and 
describe concepts of interest, albeit briefly, in the context of image 
registration and HPC. We provide an overview of the registration 
problem and its main components in the section “Registration.” 
Our main focus will be HPC-related aspects, and we will high-
light relevant issues as we explore the problem domain. This 
approach presents a fresh angle on the subject than previously 
investigated by the more general and classic reviews in the liter-
ature [1]–[3]. The sections “Multi-CPU Implementations” and 
“Accelerator Implementations” are organized from the perspec-
tive of high-performance and parallel- computing with the reg-
istration problem embodied. This is meant to equip the reader 

with the knowledge to map a registration problem to a given 
computing architecture. 

IN AN OPERATING ROOM 
NOT SO FAR INTO THE FUTURE
A surgeon is performing a potentially life-saving pancreatect-
omy on a patient in early stages of pancreatic cancer. Two 
small incisions of no more than half an inch allow laparoscop-
ic tools including a video camera and an ultrasound probe to 
be guided inside the abdominal cavity. A third, larger incision, 
is occupied by a hand-access device that facilitates the opera-
tion. The surgeon is able to locate the tumor in the ultrasound 
view with ease. This is largely possible due to a newly installed 
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three-dimensional (3-D) navigation and visualization system 
that virtually renders the patient transparent. 

The visualization system combines data from preoperative 
magnetic resonance (MR) and computed tomography (CT) scans 
with intraoperative laparoscopic ultrasound data to produce 
real-time high quality and dynamic 3-D images of the patient, in 
a process better known as multimodal registration and fusion. 
The high quality 3-D images of the tumor and the surrounding 
tissue allow the surgeon to resect the malignant cells with little 
damage to healthy structures. 

Such a minimally invasive approach avoids the trauma of 
open surgery, and a faster recovery time means that the 
patient will be released from the hospital in just two days. 

MULTIPROCESSING IN AN OPERATING ROOM
Image-guided therapy (IGT) systems play an increasingly 
important role in clinical treatment and interventions. By pro-
viding more accurate information about a patient during a 
procedure, these systems improve the quality and accuracy of 
procedures and make less invasive options for treatment avail-
able. They contribute to reduced morbidity rate, intervention 
time, post-intervention care, and procedure costs. For practi-
cal reasons, however, imaging systems that can be deployed in 
an operating room produce images with lower resolutions and 
lower signal to noise ratios than can be achieved by the state-
of-the-art imaging systems preoperatively. Therefore, it is 
desirable to be able to use preoperative images of a patient 
together with those acquired during a procedure for best 
results. In brain surgery, for example, the main challenge is to 
remove as much as the malignant tissue as possible without 
affecting critical structures and while minimizing damage to 
healthy tissue. The surgeon uses high quality CT and MR scans 
of the patient to carefully plan a procedure. During a proce-
dure, however, the brain undergoes varying levels of deforma-
tions at different stages of the surgery known as the brain 
shift. This brain shift, a result of change in the intracranial 
pressure, leakage of cerebrospinal fluid and removal of tissue, 
affects the accuracy of earlier planning and needs to be com-
pensated for. The surgeon may take a number of intraoperative 
scans to correct the plan based on patient’s current state and 
also to detect complications such as bleeding. To support the 
surgeon, the IGT system needs to register intraoperative scans 
with the patient and with preoperative images. 

Modern medical imaging technologies are capable of pro-
ducing high resolution 3-D or four-dimensional (4-D) (3-D 1
time) images. This makes medical image processing tasks at 
least one dimension more compute-intensive than standard 
two-dimensional (2-D) image processing applications. The 
higher computational cost of medial image analysis together 
with the time constraints imposed by the medical procedure 
determine the range of tools that can be practically offered 
through an IGT platform. It also often means that an IGT plat-
form has to rely on HPC hardware and highly parallelized 
software. There are other practical considerations. For exam-
ple, equipment used in an operating room should be designed 

to minimize footprint, power consumption, operating noise, 
and cost. 

The continued development of multicore and massively 
multiprocessing architectures in recent years holds great 
promise for interventional setups. In particular, massively 
multiprocessing graphics units with general-purpose program-
ming capabilities have emerged as front runners for low-cost 
high-performance processing. HPC, in the order of 1 TFLOPS, 
is available on commodity single-chip graphics processing 
units (GPUs) with power requirements not much greater than 
an office computer. Multi-GPU systems with up to eight GPUs 
can be built in a single host and can provide a nominal pro-
cessing capacity of eight TFLOPS with less than 1,500 W 
power consumption under full load. 

Hardware and architectural complexities in designing mul-
ticore systems aside, perhaps as big a challenge is an overhaul 
of existing application design methodologies to allow efficient 
implementation on a range of massively multicore architec-
tures. As one quickly might find, direct adaptation of existing 
serial algorithms is more often than not neither possible due 
to hardware constraints nor computationally justified. 

REGISTRATION
Registration is a fundamental task frequently encountered in 
image processing applications [1]. In medical applications, 
images of similar or differing modalities often need to be 
aligned as a preprocessing step for many planning, navigation, 
data-fusion and visualization tasks. Registration of images has 
been extensively researched in the medical imaging domain. 
Image based registration may use features that are derived 
from the subject’s anatomy or those artificially introduced spe-
cifically for registration purposes. The former class of registra-
tion methods are known as intrinsic and the latter as extrinsic 
[2]. Extrinsic methods involve introduction of foreign objects 
such as stereotactic frames or fiducial markers and may be 
invasive. Once attached to the subject, markers remain fixed 
for multiple imaging sessions and can be used to align the 
images. Intrinsic methods, on the other hand, are noninvasive 
and can be used retrospectively. They may match a small set of 
corresponding anatomical and geometrical landmarks, use a 
set of structures obtained through segmentation, or be based 
on the entire content of images (e.g., voxel intensities). 
Content-based methods are particularly of interest since they 
can be fully automated but are typically compute-intensive. 
The focus of this survey is content-based registration methods. 

Figure 1 shows various components of a general registration 
solver, with the main components being a transformer, 
a  measure, and an optimizer. Registration as depicted here is 
an iterative process where one image is transformed within a 
 predetermined parameter space and compared against the 
other. We call the former the moving and the latter the fixed 
image. A measure of similarity or distance is computed between 
the images at each step and used to determine if they are “suffi-
ciently” aligned. This process is controlled by the optimizer 
that starts from an initial guess and determines  subsequent 
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steps to reach an optimal alignment. We will discuss each com-
ponent in more detail in the following subsections. 

TRANSFORMER
The transformer maps points in the moving image to new 
locations in the transformed image. Depending on the regis-
tration problem, a transformation can be collinear or deform-
able. Collinear transformations are line-preserving i.e., map 
straight lines onto straight lines. Collinear transformations 
can be described by a 4 3 4 matrix acting on homogeneous 
vectors representing 3-D points. Examples of collinear trans-
formations include rigid, similarity, affine, and projective 
(projective transformations are rarely required in medical 
imaging applications). For this reason, these types of transfor-
mations have nearly identical complexity. Methods that imple-
ment rigid registration can be easily extended to affine, often 
without any change to the transformer. 

Deformable transformation methods can be further catego-
rized as parametric and nonparametric. Nonparametric meth-
ods are based on a variational formulation of the registration 
problem, where the transformation is described by an arbitrary 
displacement field regularized by some smoothing criteria [4]. 
Parametric methods are based on some piecewise polynomial 
interpolation of a displacement field using a set of control 
points placed in the image domain. B-splines are the favorites 
because they induce local deformations that limit the compu-
tational complexity of a large grid of control points [5]. Other 
functions such as thin-plate splines and Bezier functions have 
also been used. There are efficient methods for nonparametric 
registration including multigrid solvers. While parametric 
methods are more demanding, they yield themselves more 
easily to multimodal registration applications. 

The transformer determines the intensity of the points in 
the transformed image by interpolating intensity values of cor-
responding points in the moving image. The simplest and fast-
est interpolation method is the nearest neighbor interpolation. 
Nearest neighbor should never be used in practice, as it results 
in poorly shaped cost functions, but may be useful to establish 
the baseline performance of the transformer. The most 

 commonly used interpolation method is linear interpolation. 
Other methods include quadratic, cubic, cubic B-spline, and 
Gaussian interpolation [6]. 

A transformer spends the majority of its time performing 
interpolations. As noted by Castro-Pareja et al. [7] interpola-
tion of the transformed moving image does not benefit from 
standard memory caching mechanisms due to nonsequential 
pattern of access to memory with low locality. As a result, 
transformer performance can well become memory bound. 

MEASURE
A method of measuring the similarity or distance between 
images is required for automatic registration. Ideally a similarity 
measure attains its maximum, where the images are perfectly 
aligned and decreases as the images move farther away. A dis-
tance measure, on the other hand, attains its minimum where 
the images are aligned. 

Commonly used similarity and distance measures are sum-
marized in Table 1. Just as different classes of transformations 
are suitable for modeling different geometric distortions 
between the images, different similarity measures are used for 
different intensity distortions between the images. Measures 
are broadly categorized based on their suitability for sin-
gle-modality and multimodality problems. All of the 
 single- modality measures  listed in Table 1 can be calculated by 
independent computations at each spatial location. From a 
parallelization point of view, this makes them readily adaptable 
to single instruction multiple data (SIMD) instruction sets and 
architectures such as GPUs. Multimodality measures deter-
mine statistical (mutual information) or functional (correla-
tion ratio) dependance of images where each image is assumed 
to be a realization of an underlying discrete random variable. 
These methods require estimation of joint and marginal prob-
ability mass functions (pmfs) of the underlying discrete ran-
dom variables from image data. Methods of pmf computation 
can be parallelized with varying degrees of difficulty and per-
formance improvement. We will discuss this issue in more 
detail in the context of MI computation on the GPU in the sec-
tion “GPUs.” 

OPTIMIZER
The optimizer is responsible for an efficient and often non-
exhaustive strategy to search the transformation parameter 
space for the best match between the images. In image registra-
tion, optimizers can be broadly categorized as gradient-based or 
gradient-free, global or local, and serial or parallelizable. 

Gradient-based methods require computation of partial 
derivatives of a cost function in addition to frequent computa-
tion of the cost function itself. Therefore, from an implementa-
tion perspective, they are more involved than gradient-free 
methods. The gradient computation can be based on the numer-
ical estimation of the derivatives using finite differences. 
Alternatively, direct computation of the gradient can be per-
formed when closed-form equations for the partial derivatives 
can be derived. 
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[FIG1] A general registration solver and its main components: 
F, M, and M(T) are fixed, moving, and transformed moving 
images, respectively.
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Local methods find a local optimum in the vicinity of an 
initial point and within their capture range. They may con-
verge to an incorrect alignment if not properly initialized. 
Global methods, however, find the global optimum within a 
given range of parameters. They are robust with respect to 
selection of the initial point but at the cost of slower conver-
gence. Global and local methods may be combined to 
improve robustness while maintaining a reasonable conver-
gence rate. 

Some optimization algorithms are only suited for serial exe-
cution, where each optimization step is dependent on the out-
come of previous step(s). Others may be amenable to 
parallelization. For example, each step of the gradient descent 
optimization in N-dimensional space requires computation of 
N  partial derivatives of the cost function. Here, there is limited 
opportunity to run up to N  tasks in parallel, and of course the 
additional line minimization step that may follow cannot be 
readily parallelized. We call such methods partially paralleliz-
able. And finally, we refer to optimization methods that have 
been designed for parallel execution with minimal interstep 
dependency as fully parallelizable. 

Table 2 lists some optimization algo-
rithms used for image registration and their 
respective classification. 

The overall performance of a registration 
algorithm is dependent on the effectiveness 
of the optimization strategy. This in turn 
depends on the iterations needed for the 
algorithm to converge. For gradient-free 
optimization, we define an iteration as a 
step that involves a single computation of 
the cost function. For gradient-based opti-
mization, an iteration is defined as a step 

that involves a single computation of the gradient. Depending 
on the type of gradient-based method this may involve several 
evaluations of the cost function. 

Gradient-based optimizers do more in a single iteration and 
they also converge with a significantly lower number of itera-
tions compared to gradient-free methods. The convergence rate 
of an optimizer depends on many factors including the size of 
the parameter space, optimizer settings (e.g., convergence crite-
ria), and the misalignment between the images. It is also often 
data dependent. 

The computational bottleneck of registration is not the opti-
mizer but the computation of the transformation and the mea-
sure. Most researchers have focused on fine-grained parallelization 
of these components. A few have considered coarse-grained par-
allelization, which involves parallelization of the optimizer 
itself [18], [19].

PREPROCESSOR
We have shown the preprocessor in dotted lines in Figure 1 to 
emphasize that it is an optional component. Preprocessing 

[TABLE 1] COMMONLY USED MEASURES.

MEASURE ACRONYM TYPE USAGE FORMULA1

SUM OF SQUARED DIFFERENCES SSD DIST. SINGLE-MOD DSSD 1I,J 2 5 a
x[V

1I 1x 2 2J 1x 2 22

SUM OF ABSOLUTE DIFFERENCES SAD DIST. SINGLE-MOD DSAD 1I,J 2 5 a
x[V

|I 1x 2 2J 1x 2 |

NORMALIZED CROSS CORRELATION [1] NCC SIM. SINGLE-MOD SNCC 1I,J 2 5 a
x[V

I 1x 2 J 1x 2
"E 3I 1x 22 4E 3J 1x 22 4

CORRELATION COEFFICIENT [1] CC SIM. SINGLE-MOD SCC 1I,J 2 5 a
x[V

1I 1x 2 2 E 3I 1x 2 4 2 1J 1x 2 2 E 3J 1x 2 4 2
s 1I 2s 1J 2

GRADIENT CORRELATION GC SIM. SINGLE-MOD SGC 1I,J 2 5
1
da

d

i51
SCCa'I'xi

,
'J
'xi
b

MUTUAL INFORMATION [8, 9] MI SIM. MULTI-MOD SMI 1I,J 2 5 a
i
a

j
pIJ 1 i, j 2 log

pIJ 1 i, j 2
pI 1 i 2pJ 1 j 2

NORMALIZED MUTUAL INFO. [10] NMI SIM. MULTI-MOD SNMI 1I,J 2 5
2SMI 1I,J 2

H 1I 2 1 H 1J 2  (SEE NOTE 2)

CORRELATION RATIO [11] CR SIM. MULTI-MOD 
SCR 1I;J 2 5

s21E 3J|I 4
s2 1I 2

1V ( Rd  represents a d-dimensional image domain. 
2Entropy is defined as H 1I 2 5 a i pI 1 i 2 log 1/pI 1 i 2 , where image I  is assumed to be a discrete random variable with a probability mass function (pmf) given by pI 1 # 2 .

[TABLE 2] CLASSIFICATION OF SOME OPTIMIZATION METHODS.

METHOD CLASSIFICATION

POWELL [12] GRADIENT FREE LOCAL SERIAL 
SIMPLEX [13] GRADIENT FREE LOCAL PARTIALLY PARALLELIZABLE
SOBLEX1 [14] GRADIENT FREE COMBINED PARTIALLY PARALLELIZABLE
MDS1,2 [15] GRADIENT FREE LOCAL PARTIALLY PARALLELIZABLE
GRADIENT DESCENT [12] GRADIENT BASED LOCAL PARTIALLY PARALLELIZABLE
QUASI-NEWTON [12] GRADIENT BASED LOCAL PARTIALLY PARALLELIZABLE
LEVENBERG-MARQUARDT [12] GRADIENT BASED LOCAL PARTIALLY PARALLELIZABLE
SIMULATED ANNEALING [12] GRADIENT FREE COMBINED PARTIALLY PARALLELIZABLE
DIRECT3 [16] GRADIENT FREE GLOBAL FULLY PARALLELIZABLE 
GENETIC [17] GRADIENT FREE GLOBAL FULLY PARALLELIZABLE 

1 A simplex variant, 2 multidirectional search, 3 dividing rectangles.
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encapsulates a wide range of tasks that may be performed on 
images outside the optimization loop and at the beginning of 
the process. These may include filtering, rectification, gradient 
computation, pyramid construction, feature detection, etc. An 
example is given in one of the earlier efforts to parallelize 
image registration by Warfield et al. [20]. They extract features 
based on tissue labels given by prior segmentation and paral-
lelize a feature-based interpatient registration method on a 
cluster of multiprocessor computers. They use the number of 
mismatching labels (NML) as a measure of distance in their 
registration algorithm. 

Given that preprocessor is not in the critical pass, there is 
little incentive for parallelizing it. Unless of course the registra-
tion process itself is sped up to the point that preprocessing 
becomes a bottleneck. This is likely to become the case as regis-
tration algorithms enter the real-time domain. 

COMPUTATIONAL EXPENSE OF 
IMAGE REGISTRATION
Image registration in general is computationally expensive and 
has been largely confined to preoperative applications. The main 
bottlenecks are typically the transformer and the computation 
of the measure. Single modality measures such as sum of 
squared differences (SSD) and correlation coefficient (CC) are 
less compute-intensive than multimodality measures such 
as mutual information (MI) and correlation ratio (CR). (Some 
authors use “normalized cross correlation” to refer to correla-
tion coefficient. We prefer correlation coefficient, which is the 
accepted term in statistics.) Computation of MI requires an esti-
mation of the joint probability density of image intensities. This 
typically entails, computing a joint histogram of image intensi-
ties. A seemingly simple task that is far from trivial on some 
massively parallel architectures such as GPUs [21]. 

A sample breakdown of computations in one iteration of a 
gradient-free optimization algorithm is given in Table 3 for 
affine registrations using a single modality and a multimodality 
measure. The measurements are based on a Quad core Intel 
Core i7 920 and an NVIDIA GTX 295. The time spent outside of 
the measure and transformation components is negligible com-
pared to the measure and transformation. On the CPU, the exe-
cution time is dominated by the transformer whereas on the 
GPU, the time spent in computing the measure, particularly for 
the MI, exceeds the transformer time. This is expected as GPUs 
are designed to speed up geometric transformations. Obviously, 
for more complex transformation models such as the deform-
able B-splines, more time will be spent in the transformer for 
both platforms. 

We note that optimization algorithms make decisions based 
on the measure and do not directly use the intermediate results of 
the transformer. As such, transformation and similarity measure 
computations may be performed in one step and within the same 
module to remove the need for storage and subsequent retrieval 
of transformed image data. This obviously improves performance, 
especially where input/output traffic is an issue. However, it also 
makes it more difficult to modularize the implementation and 
cater for arbitrary combinations of transformations and measures.

MULTI-CPU IMPLEMENTATIONS

SYMMETRIC MULTIPROCESSING
In SMP architectures, multiple CPUs/cores have access to a sin-
gle shared main memory. This makes parallelization of serial 
code relatively straightforward. The main methods for paral-
lelization on SMP architectures are POSIX threads (pthreads) 
and OpenMP [22], [23]. The pthreads standard defines an appli-
cation programming interface (API) for explicit instantiation, 
management and synchronization of multiple threads, whereas 
OpenMP mainly consists of a set of compiler directives (and a 
supporting API) that allows for implicit parallelization. 

Most serial programs can be parallelized on SMP architec-
tures with minimal modification. The ease with which paral-
lelization can be achieved, especially with OpenMP, can be 
deceiving. There is an adage in HPC circles that says “OpenMP 
does not make parallel programming easy, it only makes bad 
parallel programming easy.” We should emphasize that there is 
nothing inherently inhibiting about OpenMP or SMP platforms. 
It is only that optimal parallelization usually requires a change 
in the algorithm, programming model and memory access pat-
tern in addition to the syntax. We encourage the reader to be 
prepared to reevaluate the approach to solving a problem on 
parallel systems and avoid the temptation of simply mapping a 
serial code to multiple threads. We also advise that use of syn-
chronization primitives should be limited to a minimum and 
alternative methods to achieve an outcome without synchroni-
zation should be investigated. Synchronization refers to any 
mechanism for coordinating multiple threads or processes to 
complete a task. Examples of synchronization primitives include 
mutual exclusion (mutex), thread-join, and barrier. Atomic 
operations also involve implicit synchronization.

A good example of SMP parallelization of a registration algo-
rithm is given by Rohlfing et al. [24]. They use pthreads to par-
allelize B-spline deformable registration on 64 CPUs. They 
exploit a combination of procedural (precomputation, multires-
olution, and adaptive activation of control points) and architec-
tural elements (e.g., data partitioning) to optimize their method. 
While the hardware has been long superseded, their approach is 
still relevant today. We would not change much about their 
method except that they use synchronized reduction of partial 
joint histograms into a global histogram in the MI computation 
phase by using the mutex lock. One can avoid the need for syn-
chronization by dividing partial histograms and the resulting 
global histogram among the available threads. For N  threads, 

[TABLE 3] A SAMPLE BREAKDOWN OF COMPUTATIONS FOR 
AFFINE REGISTRATIONS ON A MULTICORE CPU AND A GPU.

AFFINE (SSD) AFFINE (MI)

MEASURE TRANSFORM MEASURE TRANSFORM
CPU 4.3% 95.7% 13.5% 86.5% 
GPU 50.4% 49.2% 86.9% 13.0% 
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this divides each partial histogram into N  equally sized non-
overlapping regions. Each thread, then, computes part of the 
global histogram by summing values across corresponding 
regions of partial histograms. Since the regions are nonoverlap-
ping, the computations are guaranteed to be free of write-con-
flicts and no synchronization is required. 

MULTIPROCESSING WITH NUMA
Efficient memory access is an important design consideration in 
multiprocessor systems with many cores where maintaining an 
efficient cache coherency on a single-shared-bus becomes less 
practical as the number of processors increases. NUMA architec-
ture divides memory into multiple banks; each assigned to one 
processor. Processors have faster access to their local bank than 
remote banks attached to other processors. 

Access to memory on remote banks can be several times 
slower than access to local memory. This is due to data traveling 
through a longer path and also transient access requests by 
other processors that may require the memory bus to be shared. 
Figure 2 shows the schematic of a multiprocessor system with a 
NUMA architecture. An algorithm that is optimally designed for 
NUMA makes only infrequent attempts to access data on remote 
banks. A parallel application can theoretically achieve linear 
scalability with respect to memory throughput whenever proper 
distribution of memory to local banks is possible. 

Image registration can be efficiently implemented on NUMA 
architectures as shown in Figure 3. Both the transform and 
measure computation can work on a spatial subset of the imag-
es. To achieve optimal performance, the fixed image F is divided 
among the memory banks and the corresponding portion of the 
transformed moving image M 1T 2  will also be stored on the 
same memory bank. However, the path taken by the optimiza-
tion algorithm cannot be determined a priori and the trans-
former will use different areas of M  to create the local portion 
of M 1T 2  at each iteration. As such, each memory bank will need 
to receive a local copy of the moving image M  during the ini-
tialization step. Given that the optimization algorithm will take 
several iterations to converge, this initial overhead is justified. 

The distribution of resources to specific memory banks requires 
setting an appropriate memory and processor affinity . Processor 
affinity refers to explicit binding of a thread to a specific processor. 
Memory affinity is explicit allocation of data on a specific memory 
bank. This is operating system dependent and will make the code 
less portable. The alternative is, of course, to be completely oblivi-
ous to the memory architecture and hope that the compiler and 
the operating system will make the right decisions. This may not 
be an entirely unreasonable strategy, depending on the number of 
processors and whether a program is memory bound or CPU 
bound. However, as the number of available CPUs increases or for 
programs that are memory intensive, it becomes more important 
to design an optimal memory access strategy.

MULTIPROCESSING WITH DISTRIBUTED MEMORY
DM architectures are characterized by lack of access to a global 
shared memory available to all processors. DM systems are 

 typically built by clustering SMP or NUMA nodes. As such, in 
distributed architectures, subgroups of processors have access 
to shared memory. 

From a programming standpoint, these systems are charac-
terized by the need for explicit data distribution and interpro-
cess communication. The former has to be built into the 
application design and the latter is most commonly achieved 
through the message passing interface (MPI) [25]. 

The model given for data distribution in NUMA Figure 3 can 
be equally applied here. An early implementation is given by 
Butz and Thiran [18], where a Linux cluster was used to speed 
up MI-based registration for a global genetic optimizer. In [26], 
Ino et al. further partition the moving image to reduce the 
memory usage. This is motivated by the need to process large 
images in the order of 1,024 3 1,024 3 590  voxels. 
Partitioning both images also reduces traffic on the network 
during initialization. This can be an important consideration as 
the number of nodes increases and the overhead of the initial-
ization phase compared to the optimization phase can no longer 
be ignored. Partitioning the moving image requires a prior esti-
mate of the range of transformation parameters to ensure that a 
large enough portion of the image is loaded for the transformer. 

A variation is given by distributed shared memory (DSM) 
architectures, where a large virtual address space is made avail-
able to all processes across all nodes. DSM can only hide the 
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[FIG2] SunFire X4600 M2 schematic with eight NUMA nodes. 
A CPU can access remote memory through a maximum of 
three hops.

[FIG3] Partitioning of the data set among multiple memory 
banks for improved access. The original data is loaded from 
a shared storage medium.
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mechanism of communication between processes and not the 
associated latency. We argue that if the end goal is to achieve 
the highest performance, little benefit can be drawn from 
the convenience of a DSM architecture and the program should 
be designed to be aware of the locality of data. 

Wachowiak and Peters [19] develop MI-based registration 
for a DSM architecture. Their implementation does not take 
memory locality into account, but they use DIRECT and MDS 
parallel optimization methods to their advantage. This coarse-
grained parallelization results in lower communication-to- 
computation overhead. 

As some authors have pointed out [27], a major benefit of 
DM clusters is their lower cost compared to many-core SMPs or 
DSM systems. 

ACCELERATOR IMPLEMENTATIONS

GRAPHICS PROCESSING UNITS
The majority of recent research in multicore adaptation 
of registration algorithms has been focused on GPUs [28]–
[34]. There are several reasons for the interest in GPUs. 
Thanks to fierce competition and driven by the gaming indus-
try, GPUs today provide some of the highest performance per 
dollar and the lowest power consumption per FLOPS of any 
computing platform. While not every radiology department 
can afford the cost and space needed by a conventional HPC 
data center, they can certainly benefit from unlocking the 
computational power of the GPUs in their existing computers. 

GPU implementations tend to be more challenging than 
multicore CPU implementations and are more rewarding in 
terms of achievable performance gains. Earlier work in this area 
(mainly prior to 2007) [35]–[42] involved devising methods to 
map the registration problem onto a graphics pipeline that was 
not specifically designed for general-purpose computing. The 
GPU landscape has since gone through a seismic change with 
the introduction of native general-purpose computing capabili-
ties in late 2006. The GPU registration literature prior to 2007 
has been superseded from both hardware and software perspec-
tives. We will focus on the latest technology for general-purpose 
computing on GPUs in this section. 

The modern software platforms for general-purpose pro-
gramming on the GPU are currently NVIDIA’s CUDA [43] and 
AMD/ATI’s Brook+ [44]. These platforms are vendor-specific, 
however, OpenCL compliant implementations that provide 
hardware-independence are being gradually released by the ven-
dors. This essentially invalidates the only remaining argument 
in favor of using the graphics pipeline for general-purpose pro-
gramming, which has been better portability. 

None of the papers we considered for this survey developed their 
methods for ATI Brook+. It appears that the research community 
has almost exclusively adopted CUDA as their preferred GPU plat-
form. This is likely to change with wider support for OpenCL in 
non-GPU architectures such as IBM’s Cell/BE and Intel’s Larrabee. 

Modern GPUs extend the single instruction multiple data 
(SIMD) paradigm to a single instruction multiple threads 

 architecture (SIMT). SIMT provides more flexibility by parallel-
ism for (almost) independent threads as well as data-parallel 
code. GPUs achieve their computational performance by dedi-
cating more transistors to their arithmetic logic units (ALUs) 
for data processing, at the expense of reduced flow control and 
data caching. They extend the conventional thread-level paral-
lelism by introducing two additional layers of parallelism in the 
form of closely knit groups of threads known as warps or wave-
fronts, and groups of warps/wavefronts known as thread blocks 
or simply blocks. Warps are significant since they define the 
unit of flow control in a GPU. Threads in a warp are bound to 
execute the same instruction (on different data). Diverging 
paths of execution for threads in a warp result in serial execu-
tion of all paths. Hence, an important consideration in adapting 
parallel code to GPU architecture is minimizing diversion in 
warps. This can be achieved by designing warp-aware algo-
rithms and reorganizing data to optimize flow control. An 
example of such an approach is given in [33]. 

Another notable technical feature in the current generation 
of GPUs is the availability of an abundance of high bandwidth 
on-board RAM. The memory bandwidth of top-of-the-line 
GPUs exceeds 140 GB/s and cards with up to 4 GB of memory 
are available. This is particularly important for medical image 
analysis applications that have to deal with large 3-D data sets. 
Despite an extremely high bandwidth, the GPU’s main memory 
is largely uncached and suffers from a rather large latency. 
Hence to fully utilize the bandwidth and achieve an optimal 
performance, one needs to understand the hardware architec-
ture and its various memory and limited caching models. 
Optimum use of memory such as coalesced transfers may 
speed up an application by an order of magnitude. This level of 
flexibility is typically available with lower-level APIs and run-
time SDKs such as CUDA (NVIDIA) [43] and CAL (ATI/AMD) 
[44]. Programs developed with a lower-level API lack portabili-
ty and need to be maintained as the hardware evolves. 
Abstraction layers such as OpenCL and Brook+ avoid these 
issues by hiding memory management details from the devel-
oper. However, better portability may come at the cost of sub-
optimal performance. 

GPUs are well equipped for speeding up geometric transfor-
mations. Geometric transformations (regardless of their type) 
require some sort of interpolation that involves reading the con-
tent of adjacent voxels in a cubic region of memory. Standard 
computer architectures are designed to optimize sequential 
memory access through their caching mechanism. This does 
not fully benefit 3-D interpolations over a cubic mesh. Modern 
GPUs, on the other hand, support a 3-D texture addressing 
mode that takes the geometric locality into account for caching 
purposes. This greatly improves the efficiently of transforma-
tions on the GPU. 

Different MI computation methods on the GPU have been 
reported in the literature. Shams et al. compute MI by comput-
ing joint histograms on the GPU in [21], [29], and [33]. A main 
finding is that for different sized histograms (number of bins 
used for MI computation), the optimal algorithm differs. For bin 
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ranges typical in MI computation (100 3 100 and above) an 
efficient histogram computation algorithm specifically designed 
for massively multiprocessing architectures is presented in [33]. 
The paper describes a new method for histogram computation 
(sort and count) that removes the need for synchronization or 
atomic operations, based on sorting chunks of data with a paral-
lel sort algorithm such as bitonic sort. Lin and Medioni [30] 
report an adaptation of Viola’s MI computation approach [8].
Their method approximates the joint pmf by stochastic sam-
pling of the image intensities and using Parzen windowing. This 
method lends itself well to parallelization on the GPU, reduces 
the computational burden of transformations by only using a 
subset of image data, and provides analytic equations for com-
putation of MI derivatives. However, sparse sampling of the data 
set may compromise accuracy of the registration [37]. A sam-
pling method specifically designed for the GPU is given by 
Shams and Barnes [29]. This method samples the bin space for 
computing histograms rather than the intensity space. The 
method improves performance of computations and is subject 
to the same trade off between performance and accuracy. We 
note that a majority of researchers use direct computation of 
the histogram [3]. 

A natural extension to parallelization of registration algo-
rithms on the GPU is horizontal parallelization across multiple 
GPUs. Multi-GPU systems belong to DM class of parallel archi-
tectures. An implementation on such systems involves data par-
titioning and the use of MPI as discussed in the section 
“Multiprocessing with Distributed Memory.” We recommend 
the reader to refer to a more detailed discussion of the subject 
by Plishker et al. [45]. 

CELL BROADBAND ENGINE
Cell broadband engine (Cell/BE) is an asymmetric heteroge-
neous multicore processor with a DM architecture. It comprises 
a general-purpose PowerPC core known as a PPE and eight spe-
cialized vector processing cores known as SPEs. Each SPE is 
equipped with a four-way SIMD engine and has its own small 
(uncached) memory known as the local storage.  Local storage 
is only 256 KB in the current generation of hardware, and it is 
shared between data and kernel instructions.

Optimal implementation of registration algorithms on 
Cell/BE architectures involves task-level parallelization, data 
partitioning, and vectorization of the code for the SPEs’ 
SIMD engine. It also involves handling the transfer of data 
between the system memory and SPEs’ local storage. The 
results by Ohara et al. [46], [47] and Rohrer and Gong [48] 
provide good insight into challenges involved in designing 
registration on this architecture for collinear and deformable 
registration, respectively. 

FIELD PROGRAMMABLE GATE ARRAYS
A custom field programmable gate array (FPGA) accelerator 
prototype for MI-based rigid registration is given by Castro-
Pareja et al. in [7]. They argue that a major bottleneck in MI 
computation using Collignon’s method [9] is partial volume 

(PV) interpolation and that it is memory bound. They improve 
performance by parallelizing access to memory and assigning 
independent memory controllers and types of memory for stor-
age and access to the fixed image, the moving image, and the 
joint histogram. A cubic addressing scheme is used for the mov-
ing image to speed up the interpolation. This is similar to cach-
ing available in GPUs for access to texture memory. An enhanced 
version of [7] is presented in [49] and a multirigid version with 
volume subdivisions is given by Dandekar [50]. 

FPGAs allow one to design customized hardware for spe-
cific registration tasks. However, they provide less flexibility 
compared to software-based implementations. With flexible 
general-purpose programming capabilities of modern GPUs, it 
is doubtful if FPGA-based implementations present any real 
benefit in this area. 

SUMMARY OF THE LITERATURE
We have summarized existing contributions in HPC of regis-
tration methods in Table 4. The table serves as a quick refer-
ence to an array of methods on various platforms and by 
different groups. 

Researchers have used various methods to present their per-
formance results. All groups report at least the speedup results 
compared to a single-core CPU implementation. When inter-
architecture comparisons are drawn, it is not always clear how 
well the CPU implementation has been optimized, if the 
streaming SIMD extensions (SSE) instruction set has been 
used, whether the code has been compiled as 64- or 32-b, or if 
64- or 32-b floating point operations have been used. For these 
reasons, speedup results should be interpreted with caution, 
more so when the reported speedups are in the order of a hun-
dred times or more. 

Most groups report their speedups for the entire registra-
tion algorithm and for specific data sets. Comparison of dif-
ferent results is further complicated as authors may have 
implemented a multiresolution scheme to further speed up 
the process and used different convergence criteria. We have 
reported/estimated the results for the finest resolution in 
Table 4, whenever possible. As discussed earlier, the execu-
tion time is an almost linear function of the number of itera-
tions of the optimization algorithm. Convergence criteria 
are most commonly based on the value of the measure and 
its relative improvement in a given step of the optimization. 
A less common approach is to set a fixed number of itera-
tions as the convergence criterion. We call the former strat-
egy dynamic convergence and the latter static convergence. 
Lack of associativity for floating point operations have the 
inevitable consequence that the same optimization algo-
rithm operating on the same data set converges with differ-
ent number of iterations on different architectures when 
dynamic convergence is employed. Even on the same archi-
tecture, compiler optimization of floating point operations 
results in variations. Unless experiments are performed on a 
large set of images, this skews the performance results one 
way or the other. 
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We have given normalized performance results in Table 4 
where possible. The word “performance” is ambiguous in the 
context of registration. It is sometimes used to refer to the 
degree of success for a registration algorithm based on accuracy 
of the registration results. In this article, we use “performance” 
in its computational capacity referring to execution efficiency of 
the registration algorithm. The purpose of normalizing the 
reported results is to give the reader an indication of the speed-
ups expected from a method without dependence on the size of 
images involved, convergence criteria, use of a multiresolution 
scheme, and to some extent the type of optimization algorithm. 
Normalized results are given in terms of average execution time 
in milliseconds for a single iteration of the optimization algo-
rithm and for processing 1,000,000 voxel pairs (ms/MVoxel/itr). 

Many authors have used gradient descent as their optimiza-
tion algorithm, largely due to its simple structure and ease of 
implementation. Once the gradient is computed, the choices 
include taking a single step in a direction opposite to the gradi-
ent where the step size may be adjusted over time, or use of a 
line minimization algorithm such as Brent’s [12]. Line minimi-
zation usually involves several computations of the cost func-
tion alone without its derivatives. 

When comparing results it is important to identify which 
variation of the gradient descent is used. We have come across 
four different implementations:

Type A: closed-form differentiation with a single step.  ■

Type B: closed-form differentiation with line minimization.  ■

Type C: numerical differentiation with a single step.  ■

Type D: numerical differentiation with line minimization. ■

Most authors exclude initialization time, including disk IO 
and loading data from host memory to GPU memory. This is a 
reasonable practice since initialization time is typically a small 
fraction of the registration task. Initialization occurs at the 
beginning of the registration algorithm whereas the optimiza-
tion loop is executed several times. 

Some of the information presented in Table 4 were not 
immediately available in the original manuscripts and were pro-
vided by the authors of the respective papers. Unless specifically 
specified, listed methods are for 3-D/3-D registration. 

FINAL WORDS
Over the last decade, a rich and diverse literature on HPC of 
medical image registration has emerged. Research in this area 
continues to be motivated by the need to minimize the overhead 
of image registration that is used as an integral part of image-
guided intervention and IGT systems. The continued research in 
this area will also facilitate the adaption of existing preoperative 
tools to real-time intraoperative environments. 

From a technical perspective, there has been a gradual shift 
away from expensive SMP supercomputers to less expensive 
clusters of commodity computers and more recently inexpen-
sive massively multiprocessing GPUs. This trend has the poten-
tial to lead to more widespread use of medical imaging tools in 
everyday clinical practice by making them affordable outside of 
research facilities and expensive operating theaters. 
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Utilizing Hierarchical 
Multiprocessing 
for Medical Image 
Registration

dvances in medical imaging technologies 
have enabled medical diagnoses and proce-

dures that were simply not possible a decade 
ago. The accelerating speed of acquisition and the 
increasing resolution of images have given doc-

tors more information, which is taken less invasively about their 
patients.  However, because of the multitude of imaging modali-
ties [e.g., computed tomography (CT), positron emission tomog-
raphy (PET), magnetic resonance imaging (MRI), and ultrasound 
(US)] and the sheer volume of data being acquired, utilizing this 
new data effectively has become problematic. One way to tap into 
the potential of this raw data is to merge these images into one 
integrated view through a procedure called image registration.

COMPUTE-ENABLED MEDICINE
For the past decade, improving performance and accuracy has 
been a driving force of innovation in automated medical image 
registration. The ultimate goal of accurate, robust, real-time 
image registration will enhance diagnoses of patients and enable 
new image-guided intervention techniques. With such a compu-
tationally intensive and multifaceted problem, improvements 
have been found in high-performance platforms such as graph-
ics processing units (GPUs) and general-purpose multicore sys-
tems, but there has yet to be a solution fast enough and effective 
enough to gain widespread clinical use. 

[William Plishker, Omkar Dandekar, Shuvra S. Bhattacharyya, and Raj Shekhar]

[The possibilities and 
  challenges of combining 
  acceleration 
  approaches 
  that utilize 
  complementary
  types of parallelism]
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To achieve the necessary 
speed, we believe that a synergy 
of approaches will be needed, 
requiring many cores organized 
at different levels of granularity. 
We call such processing hierar-
chical multiprocessing, as it 
requires the use of multiple styles of parallelism to be properly 
utilized. To accelerate medical image registration, we explore 
some of the key issues of hierarchical multiprocessing by lever-
aging a novel domain-specific framework to design and imple-
ment an image-registration algorithm on a GPU and on a 
cluster of GPUs, and compare them in terms of speed and accu-
racy. Using a set of representative images, we achieve execution 
times as low as 2.5 s and accuracy varying from submillimeter 
to 2.4 mm of average error.

INTRODUCTION
Image registration is the process of combining images such 
that the features in an image are aligned with the features of 
one or more other images. An example pairing is shown in 
Figure 1. The first phase of most registration techniques is cor-
recting for whole image misalignment, called rigid registra-
tion. Nonrigid registration often follows such that nonlinear 
local deformation from breathing or changes over time is cor-
rected. While automatic and robust registration algorithms 
exist, they tend to be computationally intensive, often taking 
minutes to execute on high-end general-purpose processors for 
rigid registration and hours for nonrigid registration. Such 
complexity has inhibited the adoption of registration technolo-
gy in the clinical workflow. While specific requirements vary 

from  application to application, 
real-time registration must be 
on the order of seconds to be 
viable in most image-guided 
intervention scenarios.

To bring more accurate and 
more robust image registration 

algorithms into the clinical setting, a significant body of research 
has been dedicated to acceleration techniques for image registra-
tion. A thorough discussion of this appears in the article “A Survey 
of Medical Image Registration on Multicore and the GPU,” by R. 
Shams, et al. in this issue of IEEE Signal Processing Magazine. 
Many multicore platforms already in use for this purpose are GPUs, 
clusters of general-purpose processors, the Cell, and even custom 
hardware from implementations on field programmable gate 
arrays (FPGAs). While many of these works have shown perfor-
mance improvements, no single technique has accelerated regis-
tration sufficiently for all clinical applications. We believe real-time 
image registration will require a combination of parallelism styles 
that can be used to accelerate different aspects of the application. 
Proper utilization of hierarchical platforms can lead to multiplica-
tive effects from complementary acceleration techniques.

Utilizing parallelism for any single platform may be a chal-
lenging and time consuming implementation task. It carries the 
normal tasks of programming (e.g., creating a software archi-
tecture, developing algorithms, testing, debugging, and perfor-
mance tuning), and the added difficulties of managing parallel 
threads (e.g., managing communication, debugging race condi-
tions, and load balancing). Utilizing parallelism on a hierarchi-
cal multiprocessing platform is even worse, often involving 
multiple programming models and environments, which 
designers must decide how to use before beginning to write 
code. To facilitate a design process in which the structure of an 
application is considered when mapping to these diverse pro-
gramming models, we leverage a novel framework based on an 
image registration specific taxonomy. To demonstrate the utility 
of this approach, we employ this framework on a commonly 
used a rigid and a nonrigid registration algorithm. 

To explore the challenges and potential benefits of targeting 
hierarchical multiprocessing platforms for image registration, 
we study two in particular: a single GPU and a cluster of GPUs. 
Using these platforms, we took our single-threaded code base on 
a general-purpose processor and, for the most time-consuming 
kernels, added acceleration tailored to the target platform. In 
particular, we focus on utilizing parallelism described in our tax-
onomy. Based on these results, we discuss the possibilities and 
the challenges of combining acceleration approaches that utilize 
complementary types of parallelism. This article expands on pre-
liminary work on this subject, which is presented in [1] and [2].

INTENSITY-BASED REGISTRATION
Intensity-based image registration algorithms rely on similari-
ties between voxel [three-dimensional (3-D pixel)] intensities. 
These algorithms are known to be robust but tend to be compu-
tationally intensive. In an intensity-based image-registration 

[FIG1] A typical medical image registration case. The CT is the 
fixed image and the PET is the moving image. A simple overlay 
of these two gives a clinician little information about the case, 
but an accurately registered result overlays the metabolic 
information of PET on the structural information of CT.

Simple Overlay

CT Image PET Image

3-D Image
Registration

IMAGE REGISTRATION IS THE PROCESS 
OF COMBINING IMAGES SUCH THAT THE 

FEATURES IN AN IMAGE ARE ALIGNED 
WITH THE FEATURES OF ONE OR MORE 

OTHER IMAGES. 
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algorithm, a transformation is often described as a deformation 
field, in which all parts of the image to be deformed (the mov-
ing image) have a specific deformation such that they align 
with the other image (the fixed image). Construction of the 
deformation field can start from just a few parameters in the 
case of rigid registration or from a set of “control points” that 
capture the nonuniformity of nonrigid registration. The final 
transformation contains the information necessary to deform 
all of the voxels in the moving image. Once a transformation is 
constructed, it is applied to the moving image. This trans-
formed image can be compared to the fixed image using a vari-
ety of similarity metrics, such as mean squared difference 
(MSD) or mutual information. 

For iterative approaches, the similarity value is returned so 
that it may guide the registration algorithm towards a solu-
tion. A variety of iterative optimization algorithms have been 
developed for medical image registration with different con-
vergence properties and computational efficiency. Problem 
parameters may also change during run time to improve speed 
and accuracy including sampling rates, interpolation strate-
gies, and varying grid resolutions.

While image registration is a computationally intensive 
problem, it can be readily accelerated by exploiting parallelism. 
Enhancements that focus on acceleration through parallelism 
can be binned into levels based on the basic unit of computa-
tion considered. Each of these must use a parallel platform as 
the target to exploit the exposed parallelism. These platforms 
support a standard parallel processing approach, a few of which 
are covered in the next section.

MULTICORE PLATFORMS
Many multicore systems are viable acceleration platforms for 
medical image registration. They vary in a variety of dimen-
sions including number of processing elements, size and hier-
archy of memory, the bandwidth and topology of on-chip 
interconnect, single-chip versus multichip, and specialized 
instructions or coprocessors [3]. Perhaps most importantly for 
this work, these high-performance multicore platforms expose 
different programming models, which exhibit different thread-
ing models, memory models, and even different language con-
structs for utilizing platform intrinsics. In this section, we 
discuss a few commonly used options that are applicable to 
image registration.

Message passing interface (MPI) is a popular standard for 
explicitly parallelizing code on multiprocessor systems. Threads 
have local memory that can be readily implemented on distrib-
uted memory platforms such as clusters. Threads then exchange 
data across the cluster with explicitly defined communication 
links. Because communication may be over relatively long 
latency links, threads tend to be more loosely coupled, which 
lends MPI to being utilized at the highest levels of parallelism. 
As an example, to employ MPI for medical image registration, 
gradient computation of the similarity measure can be distrib-
uted equally across nodes in a cluster [4]. This distribution is 
possible by virtue of the fact that each finite difference calcula-

tion for each control point is independent and requires only the 
neighboring voxels and control points to calculate.

A GPU is an array of processing elements customized for 
pixel processing. The increasing programmability of GPUs have 
made them excellent candidates for many other applications 
including image registration [5], [6], [17]. High-level languages 
are emerging to aid the task of programming GPUs such as 
NVIDIA’s Compute Unified Device Architecture (CUDA) [7]. The 
GPU programming models export the architecture as a large 
number of lightweight threads. With CUDA, threads are 
grouped into blocks that may coordinate on one tightly clus-
tered set of processing elements that are arrayed on NVIDIA 
GPUs. Some memory is shared while others are distributed, but 
each programming approach has explicit constructs to ensure 
high-speed input/output (I/O). As an independent streaming 
operation, the task could be efficiently distributed across the 
processing elements of the GPU.

For the lowest level of parallelism, hardware description lan-
guages (HDLs) are often deployed. With HDLs, the final imple-
mentation is not destined for a processor, so designers lay out 
their application structurally, exposing interfaces and cycle-by-
cycle control. A significant departure from traditional software 
programming languages, HDLs have no threading model and 
completely distributed memory structure. FPGAs can accelerate 
the voxel processing of transformation application and the simi-
larity measure calculation in medical image registration [8]. 
The independence of tasks allows for many memory accesses, 
operations, and I/O to be performed in the same clock cycle.

Since many of these acceleration techniques are independent 
of each other and implemented on different types of platforms, a 
heterogeneous computational platform that supported all of 
these approaches would create a powerful new image registra-
tion engine. Orthogonal acceleration techniques such as CUDA 
and MPI techniques could provide multiplicative speedup 
effects. But to properly utilize such a heterogeneous multicore 
system, parallelism in the application domain must be identified 
and properly mapped to the target architecture.

IMAGE-REGISTRATION SPECIFIC 
TAXONOMY OF PARALLELISM
While acceleration techniques, in general, may modify functional-
ity, we focus on the categorization of techniques that rely on paral-
lelism for performance improvements. As with classical 
general-purpose categorizations, we classify acceleration tech-
niques into “levels,” which are depicted in Figure 2. Like the clas-
sical levels of parallelism (bit, data, instruction, task/thread, and 
process level), higher levels are specializations (or restricted 
forms) of lower levels. Our taxonomy can be mapped to classical 
levels in different ways (e.g., voxel-level parallelism could be imple-
mented with data-level parallelism or task-level parallelism), but 
some mappings are impractical (e.g., optimization-level parallel-
ism cannot be implemented with bit-level parallelism).

Conversely, it tends to be easier to reap the rewards of high-
er-level parallelism than lower. Many architectural and applica-
tion factors affect this tendency both positively and negatively 
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(e.g., communication patterns, memory sizes, topology, and 
compiler performance), but for typical applications, the higher 
the level of parallelism expressed, the more readily applications 
can be accelerated. 

OPTIMIZATION-LEVEL PARALLELISM
Optimization-level parallelism represents those parts of an algo-
rithm that can run in parallel given the basic unit is an iteration of 
the image registration routine. Ino et al. [9] use this idea (which 
they call “speculative parallelism”) to promote faster convergence 
in their time-critical registration application. Since the best opti-
mization parameters are difficult to identify a priori, multiple 
instances of the same algorithm are launched with different 
parameters. Ultimately, after a specified time period, the best solu-
tion from these instances is selected. The multiple optimization 
instances require minimal communication and coordination and 
therefore are easy to execute in parallel. 

Butz and Thiran [10] perform registration by utilizing a genet-
ic algorithm in which fitness (or the metric of survival) is deter-
mined by how well the transformed image matches the fixed 
image. They implement this approach with an existing genetic 
solver parallelized using the MPI on a ten-node cluster. This opti-
mization-level parallelism is naturally utilized because evaluating 
the population of solutions is an inherently independent act. With 
this class of parallelism, utilizing it is straightforward and can be 
efficiently implemented, but an individual optimization instance is 
not accelerated. For this, application designers must tap into 
opportunities at lower levels of parallelism.

VOLUME-LEVEL PARALLELISM
Volume-level parallelism is a generalization of optimization-level 
parallelism where the computational units operate on entire vol-
umes. For example, an optimization iteration could be pipelined 
(applying one trial transform to the moving image while generat-
ing another candidate transform). Ino et al. [9] discuss the poten-
tial of “task parallelism” in accelerating the gradient computation 

of a rigid registration algorithm. This is possible, since indepen-
dent finite difference calculations are done using the entire vol-
ume. While volume-level parallelism is simple to capture, its use 
is limited. For many algorithms, the number of independent, 
entire-volume calculations is small. Furthermore, distributing 
volumes to processing elements can suffer from high communica-
tion overhead. Lower levels of parallelism have tended to offer 
more opportunities for acceleration.

SUBVOLUME-LEVEL PARALLELISM
In medical image registration, subvolume-level parallelism is per-
haps the most popular. In this approach, the computation is per-
formed on subvolumes of image. Often designers can divide 
volume-level work into smaller subvolumes that are later recom-
bined to produce the final solution. While this creates many 
opportunities for parallelism, it comes at the price of additional 
overhead such as coordinating how volumes will be split, manag-
ing overlap regions, and consolidating results. 

Rohlfing and Maurer [11] employ subvolume-level parallelism 
for accelerating the similarity calculation. The volume is broken 
into equally sized sections such that a thread computes its local 
mutual histogram for mutual information (MI) and then merges 
its result into the global one. Ourselin et al. [12] use a block 
matching approach to find the deformation field. Inspired by 
video compression, the block matching technique compares 
“blocks” of one image against blocks of the other. These calcula-
tions are distributed across processors using MPI. In the same 
implementation, the authors accelerate image resampling with 
OpenMP. By distributing computation on individual multiproces-
sor machines, processes can share image memory and reduce the 
communication overhead incurred by transmitting images. They 
simultaneously utilize two programming paradigms to improve 
performance results.

Ino et al. [9] use “data parallelism” by distributing “small parts” 
of the image to subtasks that are assigned to different processors. 
Ino, et al. leverage this same level of parallelism in [4] by distribut-
ing the gradient computation of the similarity measure for control 
points across a distributed memory system. Such a distribution 
not only load balances the computation, but also reduces the 
memory requirements on an individual node. 

Stefanescu et al. [13] parallelize the demons algorithm [14], 
which is based on optical flow, onto a 15-node cluster. The authors 
split the image into subvolumes to perform matching and filter-
ing. Stenfanescu et al. [15] perform similar parallelization using a 
different registration technique. Subvolumes are assigned to dif-
ferent processors and communication is regularized over them. 
Hardware-based approaches can also utilize subvolume-level par-
allelism. Dandekar et al. [16] create an architecture in an FPGA 
that solves the registration problem recursively on subvolumes. 
Since each subvolume is an independent local registration prob-
lem, datapaths can be replicated for additional performance. 

Greater effort has been applied to this level of parallelism to 
achieve speedups in medical image registration. This form is the 
most general flavor of parallelism and can be readily exploited by 
the most commonly used parallel platform clusters. While clusters 

[FIG2] Our domain-specific organization of parallelism.
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are not optimally suited to lower levels of parallelism, researchers 
have been finding opportunities for parallelism at lower levels 
using different platforms.

VOXEL-LEVEL PARALLELISM
Voxel-level parallelism describes parallelism in terms of single vox-
els. In this case, the regional benefit of using subvolumes is not 
present, so application designers find parallelism in independent 
voxel computations. Strzodka et al. [17] implement a gradient flow 
algorithm optimized for a GPU. This algorithm maps well to a 
GPU as images are stored into texture memory and the operations 
used are supported by the GPU hardware. Warfield et al. [18] uti-
lized a “workpile” of threads to process a voxel independent classi-
fication method. They used threads on a shared memory platform 
to accelerate the task. Voxel-level parallelism that cannot be mod-
eled as subvolume parallelism turns out to be rare. But with the 
rise in popularity of GPUs, efforts that utilize this parallelism are 
likely to increase. The last level explored by designers is the paral-
lelism present in processing an individual voxel. 

OPERATION-LEVEL PARALLELISM
Operational-level parallelism is the lowest, most general form of 
parallelism. At this level, parallelism can be explored in many ways 
as the basic computational unit is no longer defined. Image-
registration application designers have found parallel activities to 
accelerate when processing a single voxel. Castro-Pareja and 
Shekhar [8] construct an architecture 
that parallelizes the computation of 
transforming, interpolating, and comput-
ing the MI of voxels in an image in milli-
seconds. Designed in a HDL, it can 
perform MI-based rigid registration in 
about one minute. Beyond taking advan-
tage of the instruction level parallelism 
transparently on a modern processor, 
operation level parallelism is the most 
difficult to utilize. Only custom hardware 
platforms are suitable to effectively 
exploit this level of parallelism.

STRUCTURED PARALLELISM 
IMPLEMENTATION
To evaluate the potential performance 
benefits of utilizing different levels of par-
allelism, we construct a design frame-
work based on the image registration 
specific design taxonomy. If we were just 
dealing with individual platforms, we 
could simply implement each accelera-
tion technique into the code base as nec-
essary. But since we want to experiment 
with combined approaches, we start by 
expressing different types of parallelism 
in a structured fashion. After exposing 
and categorizing application parallelism, 

we map these to architectural primitives as presented by the pro-
gramming models of our respective targets. 

Mapping of parallelism to architectural resources requires 
insight about the application and architecture. Future work would 
assist in automating this procedure, but for now we rely on 
designer guidance. Once mapped, we employ the tools and design 
principles specific to the target platform component. For instance, 
a GPU’s array of pixel-processing elements is often abstracted by 
the programming model as a set of threads with a language like 
CUDA. By using the target-specific programming environment, we 
exploit an efficient compilation path to the target with direct 
access to platform intrinsic crucial for performance. The develop-
ment experience is also enriched through debuggers, visualization 
engines, and simulation environments.

For example, Figure 3 depicts both rigid and nonrigid applica-
tions each represented by a tree. Each registration algorithm is 
mapped to a hierarchical multiprocessing platform: a set of hosts 
networked together with MPI where each host has a GPU accelera-
tion based on the CUDA programming model. The location of each 
application module indicates which computational resource it is 
mapped to. For instance, the “Linear Transformation” box in the 
“Rigid” application pictorially represents an assignment of a rigid 
registration’s linear transformations to CUDA threads. Similar to 
the denotation of computational mapping, we represent the sys-
tem mapping of application communication to an architectural 
primitive. For a nonrigid registration algorithm, the gradient 
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[FIG3] A rigid and a nonrigid registration algorithm described in our framework targeting 
a hierarchical multiprocessing platform with graphics processors in a cluster. 
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computation for a free-form deformation (FFD) grid can be readily 
accelerated using a general-purpose cluster as well as a GPU. 

To adhere to our hierarchical multiprocessing approach, the 
code was written to maintain the interfaces described by the struc-
tured mapping of parallelism. For example in Figure 3, subvol-
umes are sized to ensure that they are properly divisible inside an 
MPI thread. These interfaces allow for methodical changes of both 
the platform and the user interface.

EVALUATION
To evaluate our implementation framework, we choose a repre-
sentative algorithm and high-performance multicore implemen-
tation vehicles.

ALGORITHM
Based on the structure of the framework and insights of the 
previous section, we implement the same image-registration 
algorithm on a single GPU and a GPU cluster. For rigid regis-
tration, the optimization method is based on downhill sim-
plex [19] and the similarity measure is MSD with 
nearest-neighbor interpolation. The nonrigid algorithm is 
based on Rueckert et al.’s method [20] with an FFD grid uti-
lizing B-spline interpolation between control points and tri-
linear interpolation between voxels.

For our rigid algorithm, parallelism comes from the inde-
pendence of the MSD calculation performed on separate subvol-
umes. Large subvolumes are a good match to the granularity of 
MPI nodes and small volumes map naturally to CUDA blocks 
(an abstraction of the GPU pixel multiprocessors), so both the 
GPU and the cluster can exploit the similarity measure calcula-
tion parallelism. Each could be used for a single acceleration 
platform, but we combine them by constructing the MPI suvol-
umes to be large enough to be divided into smaller subvolumes 
used by the GPU. 

For our nonrigid implementation, we utilize the subvolume-
level parallelism of the gradient calculation for each control 
point in MPI. The gradient calculation using finite difference 
requires multiple similarity measure calculations with the addi-
tion of B-spline interpolation of control points to determine 
local deformation. A GPU can effectively accelerate this calcula-
tion by utilizing cooperative multithreading: mapping plane 
interpolation to a set of threads, row interpolation to a subset of 
the same threads, and finally the point interpolation to a single 
thread. As with rigid registration, the separation of these two 
parallelism constructs inside a structured framework allows us 
to utilize them on individual platforms as well as on a combined 
hierarchical multiprocessing platform.

EXPERIMENTAL SETUP
We based our experimental implementations on a single-thread-
ed code base utilizing double precision floating point computa-
tions. Using this single-code base, we incorporated acceleration 
techniques wrapped by preprocessing directives. At compile 
time the software could be targeted for a specific parallel plat-
form. The considered parallel platforms are as follows:

a single GPU-NVIDIA GeForceGTX 285 with 1 GB of RAM  ■

targeted with CUDA SDK 2.2
a GPU cluster:  Four GPUs in separate PCs connected via  ■

gigabit Ethernet with the structure described in Figure 3.
The GPU implementations utilized single precision floating 

point calculations to optimize performance on the platform. For 
rigid registration, the implementations were profiled with five 
pairs of CT images of the torso where the translation and rota-
tion vectors were known. Each image was 256 3 256 3 256 
with 8 b representing voxel intensity. The deformation parame-
ters were determined at random for each case and the rigid and 
nonrigid registration cases were separate so that we could study 
both scenarios individually. There was no rigid misalignment in 
the nonrigid registration cases and no nonrigid misalignment 
in the rigid registration cases. The rotation ranged between 
225° and 25° on each axis and between 225 mm to 25 mm in 
each dimension. With nonrigid registration, five new pairs were 
created by deforming a torso with a grid of size 5 3 5 3 5 over-
laid. Each control point was randomly moved in each dimension 
by up to 2 cm in either direction. The grid used to correct this 
was of the same size. The image voxel size was 1.38 3 1.38 3
1.5 mm. The algorithm stopped when a minimum step size was 
reached at which there was no improvement. The downhill sim-
plex and gradient descent parameters (such as starting position, 
initial step size, and stopping criterion) were held constant 
across all cases and implementations. 

We constructed MPI subvolumes equal to the number of 
nodes in the cluster that made them large enough to be divided 
into GPU subvolumes to match the GPU blocks. The GPU block 
dimensions were 8 3 8 3 4 for rigid registration and 4 3 4 3 4 
for nonrigid registration. In general, larger blocks are more bene-
ficial to performance since more threads are available to keep 
GPU utilization high, but in our case, nonrigid blocks were small-
er because more resources are used for the nonrigid registration 
similarity measure calculation. This limits the number of threads 
that can be assigned to one processing element of the GPU.

RESULTS
Rigid registration results were of high quality for the GPU accel-
erated implementation, while nonrigid registration results vary 
as shown visually by one case in Figure 4, in which the moving 
and fixed images are tiled together in a checkerboard fashion. A 
perfectly registered result should show no misalignment at the 
tile boundaries. By observing the alignment of the checkerboard 
at the spine, one can see the improvement of the GPU accelerat-
ed result and the original result. Both greatly improve on the 
initially nonrigidly unaligned image, but the original result is 
superior to the GPU accelerated result. This is due to the fact 
that our GPU implementation currently uses single precision 
floating point arithmetic optimized for graphics, while the origi-
nal implementation utilizes full double precision math. As a 
result, the GPU accelerated implementation is unable to arrive 
at the same quality of solutions in nonrigid registration

A summary of the test results is shown in Table 1. Since 
the images were artificially deformed with a known deformation 
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field, we calculated the average dis-
tance between the known and recov-
ered deformation over all voxels. As a 
point of comparison, the original 
unaccelerated implementation achieved 
an average accuracy of 0.1 mm and 0.6 
mm for the rigid and nonrigid cases, 
respectively. Note that the single GPU 
and the multiple GPU solution pro-
duced equivalent registration accuracy 
as MPI does not change the behavior 
of our implementation. In an effort to 
produce a clearer picture of how well 
the kernels perform on the GPU, the 
timing results reported in Table 1 do 
not include the time for initialization, 
file I/O, or the one time image loads into GPU memory. The 
total time for this overhead takes under two seconds, most 
of which could be amortized by new images streaming into 
the GPU during the registration of prior images. Con-
sidering acquisition and reconstruction time of intraproce-
dural medical images, both rigid registration GPU 
implementations are feasible in a clinical setting by produc-
ing a new aligned image in just a few seconds. Clinicians 
using this platform during a procedure would see aligned 
preprocudural images refresh every few seconds based on 
the changes captured by the intraprocedural  images, which 
would provide meaningful, timely guidance for a variety of 
procedures.

DISCUSSION
The single GPU significantly improve the performance of the 
original code base, in both the rigid and nonrigid registration 
cases. In each of these implementations, the performance 
improvement is derived from structuring the application so that 
the code can be methodically targeted to hierarchical multipro-
cessing platforms. We observed performance derived from this 
GPU implementation comes at the expense of inaccuracy over 
the original implementation comes from the limited floating 
point precision present in the GPU. When a control point is var-
ied for its finite difference calculation, it makes only a minor 
change in the similarity measure. Even though the GPU approx-
imates well most of double precision finite difference calcula-
tions, some subset of them is poorly estimated during each step. 
Since all points advance simultaneously after the gradient is cal-
culated, even a few wayward control points can significantly 
skew the similarity measure between 
the fixed and moving image, inhibiting 
the overall convergence.

SUMMARY
Hierarchical multiprocessing offers the 
potential of significant performance 
improvement to some compute inten-
sive  applications, but it is accompanied 

by new design challenges including finding and exploiting 
parallelism. In this work, we discussed our approach to utiliz-
ing hierarchical multiprocessing in the context of medical 
image registration. By first organizing application parallelism 
into a domain-specific taxonomy, we structured an algorithm 
to target a set of multicore platforms. We demonstrated the 
approach on a cluster of GPUs requiring the use of two paral-
lel programming environments to achieve fast execution 
times. There is negligible loss in accuracy for rigid registra-
tion when employing GPU acceleration, but it does adversely 
effect our nonrigid registration implementation due to our 
usage of a gradient descent approach. 

Towards our goal of robust real-time registration, we 
believe that the advantages of GPU and multi-GPU accelera-
tion could be reaped by running different phases of image 
registration on different platforms (e.g., using GPU accelera-
tion first for a fast, coarse solution, and then not using it for 
more accuracy towards the end, as the imaging scenario 
would permit). Alternatively, a different algorithm could be 
employed for the GPU that would be less sensitive to precision 
effects or utilizing double precision floating point units now 
on high-end GPUs. We believe the structured approach pre-
sented here will enable our continued exploration into these 
and other implementations.

As we consider more complex acceleration techniques to 
combine, a robust system of capturing the parallelism of the 
application will be needed. Programming with formal underpin-
nings would give programmers a more natural way of express-
ing each type of parallelism without having to dive into 
low-level, idiosyncratic GPU languages, for example.

[TABLE 1] SPEED AND ACCURACY RESULTS OF RIGID REGISTRATION AND 
NONRIGID REGISTRATION, AVERAGED OVER FIVE SEPARATE CASES EACH. 

 PLATFORM
AVERAGE 
ACCURACY (MM)

AVERAGE NUMBER 
OF ITERATIONS

AVERAGE TIME PER 
REGISTRATION (S)

RIGID CASES ONE GPU 0.10 313 7.9
FOUR GPUS 0.10 313 2.5

NONRIGID CASES ONE GPU 2.43 12.6 250
FOUR GPUS 2.43 12.6 98

[FIG4] Example registration (Case 1) of an image and its nonrigidly deformed version fused 
with a checkerboard pattern: (a) uncorrected, corrected with the original, (b) unaccelerated 
CPU implementation, and (c) corrected with the implementation with GPU acceleration.

(a) (b) (c)
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Synthetic Aperture 
Radar Processing 
with GPGPU

[Maurizio di Bisceglie, Michele Di Santo, 

  Carmela Galdi, Riccardo Lanari, and Nadia Ranaldo]

S
ynthetic aperture radar (SAR) 
processing is a complex task 
that involves advanced signal 
processing techniques and intense 
computational effort. While the first 

issue has now reached a mature stage, the ques-
tion of how to produce accurately focused images in 
real time, without mainframe facilities, is still under 
debate. The recent introduction of general-purpose graphics 
processing units (GPGPUs) seems to be quite promising in this 
view, especially for the decreased per-core cost barrier and for 
the affordable programming complexity. 

This article focuses on methodologies with recurrent use to 
code examples that try to couple with the flow of the main steps 
of the SAR processing. The possibility to be comprehensive was 
prevented by the wide scenario of variations of the focusing 
algorithm as well as the spread of applications. The reader 
should look at this work as a sample of possibilities offered by 
this new technology and a collection of suggestions and consid-
erations that may guide to new applications and horizons.

INTRODUCTION 
The elegance of Earth’s view shown by orbiting satellites 
appears even inessential if compared with the formidable vol-
ume of information that is gathered by such a wonderful sight. 
The observational capability is extended to the microwave 
region of the electromagnetic spectrum, where spaceborne 
SAR systems offer the best way to achieve fine spatial resolu-
tion, long-term global coverage and short revisit time. The 
interest of a wider and wider  community in gathering SAR 
data is confirmed by the increasing number of existing and 
recently proposed platforms (for example, see TerraSAR-X, 
RadarSAT-2, Cosmo-SkyMed, Palsar, Sentinel-I, and Biomass) 

[Focusing on 

  the methodologies

  behind the 

  technicalities]

© PHOTO F/X2

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [70]   MARCH 2010

that operate, or will operate, at 
nearly all wavelengths within 
the microwaves: from P-band 
(when foliage penetration is 
required) to Ka-Band (when 
the goal is high resolution 
and lightweight). 

Applications are tailored to specific observational programs 
including disaster observation and management, geological 
mapping, snow/ice mapping, mapping of renewable resources, 
and strategic surveillance of military sites. In the next decade, a 
significant leap forward will be enabled by the assimilation of 
multitemporal data products into complex computational mod-
els working at a regional or global scale: seismic studies, moni-
toring of the buildings stability, and soil moisture evaluation for 
flood monitoring are enlightening examples where some weak 
correlation patterns cannot be displayed if space and time obser-
vations are not jointly used [1]. The preeminence of these appli-
cations drives the need for high-performance computing of SAR 
data, often under real-time constraints. 

Many-core platforms and related architectures are the gen-
eral frameworks where intensive applications can be generated 
and optimized. Works deriving from the SPIRAL framework 
demonstrate that orders-of-magnitude performance increase 
can be obtained using commercial off-the-shelf architectures 
such as Cell BE or multicore platforms [2]–[4]. At the same 
time, it is apparent that such achievements cannot be obtained 
without proper domain-specific languages with high abstrac-
tion level or, preferably, with automatic generation of high- 
performance codes. 

With the recent introduction of GPGPU, the designer is 
faced with units that exceeds CPU performance in terms of 
raw processing power and this trend is expected to continue 
for some time. Consequently, workstations equipped with 
GPGPUs are becoming the platforms of choice for low-cost 
supercomputing [5], [6]. To achieve the best speedups from 
GPU mapping, programmers are required to select applica-
tions naturally emphasizing parallelism and maximizing 
arithmetic intensity (the number of arithmetic operations per 
memory access), but also to choose algorithms that cut up 
computations in great numbers of independent batches, to 
structure a code so as to minimize incoherent branching 
within the threads of each single batch and to optimize the 
masking of memory latency [5]. 

De facto, many SAR image 
and product formation steps 
are independent and separa-
ble, so they turn out to be 
good  candidates for massively 
para l le l  computat ion on 
GPUs. Along the hierarchy of 

SAR processing procedures, a considerable amount of pro-
cessing is required to generate single-look complex images 
from the acquired raw data (readers should agree that raw 
images are quite unimpressive). This stage of processing 
requires forward/backward fast Fourier transforms (FFTs) in 
one or two dimensions (depending on the philosophy of 
choice) and a number of filtering and interpolation steps. As 
displayed in Table 1, the overall computational charge per 
orbit appears relevant. 

This matter is, however, rapidly evolving in many directions. 
Better architectures will be discovered but, nonetheless, data 
will become spatially and temporally more continuous. However, 
as A.M. Turing says at the end of his paper “Computing 
Machinery and Intelligence,” [22] “We can only see a short dis-
tance ahead, but we can see plenty there that needs to be done.” 

SAR GEOMETRY AND PROCESSING ARCHITECTURES 
A significant role in the theory of SAR imaging is played by 
the acquisition geometry, including here the relevant signal 
features induced by the platform motion. The antenna sys-
tem, looking across the flight direction, transmits a short, 
chirped waveform, f 1t 2 , with a pulse repetition time 1/PRF 
much longer than the waveform duration; the echoes back-
scattered by the earth’s surface are received through the 
antenna pattern and digitized line by line at each platform 
position. The equirange surfaces are concentric spheres 
whose intersection with the flat terrain generates concentric 
circles. Surfaces with identical Doppler shift are coaxial cones 
with the flight line as the axis and the radar platform as the 
apex. The intersection of these cones with the flat terrain 
generates hyperbolas. Objects lying along the same hyperbole 
will provide equi-Doppler returns. 

The most natural reference geometry is perhaps the cylindri-
cal system where the axis coincides with the flight trajectory 
(supposed to be a straight line) [7], [8] and the other two coor-
dinates are the range from sensor to target and the viewing 
angle (see Figure 1). The acquisition geometry makes the SAR 

[TABLE 1] COMPARISON OF MISSION PARAMETERS FOR RECENT AND FUTURE SAR SYSTEMS.

INSTRUMENT OR 
MISSION 

AZIMUTH 
RESOLUTION

CARRIER 
FREQUENCY MISSION OBJECTIVE DATA RATE

RANGE 
SAMPLES 

BIOMASS 12.5 [M] P-BAND OBSERVATION OF GLOBAL FOREST BIOMASS 100 GB / ORBIT N/A
ALOS-PALSAR 7–100 [M] L-BAND EARTH OBSERVATION 200–400 GB/DAY 688–11,488
RADARSAT-2 3–100 [M] C-BAND USE OF SAR DATA FOR COMMERCIAL USE UP TO 200 GB/ORBIT 8,000–16,000
SENTINEL- I 5–80 [M] C-BAND GLOBAL MONITORING FOR ENVIRONMENT AND 

SECURITY
60 GB/ORBIT N/A

COSMO-SKYMED 1–100 [M] X-BAND EARTH OBSERVATION AND DEFENSE 560 GB/DAY N/A
TERRASAR-X 1–18 [M] X-BAND EARTH OBSERVATION AND SATELLITE INTERFEROMETRY 70 GB/DAY N/A

THE QUESTION OF HOW TO 
PRODUCE ACCURATELY FOCUSED 
IMAGES IN REAL TIME, WITHOUT 
MAINFRAME FACILITIES, IS STILL 

UNDER DEBATE.
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raw data processing operation 
(often referred to as focusing or 
compression) an intrinsically 
two-dimensional (2-D) and 
space-varying problem. To 
understand this concept we 
should consider the response 
from a single point placed on a nonreflecting surface. Suppose 
that, at a time t r, the radar is in the position of closest approach 
to a point scatterer of coordinates 1x, r 2  in the cylindrical refer-
ence. At each acquisition, the radar moves along track, of a step 
v/PRF, where v is the sensor-target relative velocity, and at a 
new position, say 1vt r, 0 2 , the acquisition time of the leading 
edge is changed. Actually the acquisition time shortens when 
the radar moves toward the point, lengthens when the radar 
moves forward. The range R 1t r 2  from radar to target can be 
expressed as 

 R 1t r, x, r 2 5 3r2 1 1vt r2 x 2 2 41/2,

which, under the approximation that the antenna aperture is 
not too wide, can be used to define the range migration term as 
dR 1t r, x, r 2 5 R 1t r,  x, r 2 2 r . 1vt r2 x 2 2/2r  [7]. The genera-
tion of a SAR image corresponds to the coherent combination 
of the backscattered echoes of each target, collected within the 
synthetic aperture, accounting for the phase changes due to the 
sensor-to-target distance variations and for the range migration 
effect. The range dependence of the synthetic aperture and the 
2-D characteristics of the range migration effect makes the 
SAR image formation process a 2-D space-variant (range- 
dependent) problem. 

To provide a sufficiently general statement of the SAR acqui-
sition and processing problem, define 

an object space as the 2-D domain where the scatterers  ■

having a reflectivity g 1x, r 2  are represented. The cylindrical 
coordinate system 1x, r 2  is here assumed to represent a point 
(the viewing angle is omitted because it does not contribute 
to the sensor-target distance) 

a data space as the domain where the received data  ■ u 1t, t r 2  
are represented as a function of t (the fast time) and t r (the 
slow time)

an image space as the space of the processed SAR data  ■

I 1t, t r 2 . 
The SAR signal acquisition is a mapping from the object 

space to the data space. It is the space-variant superposition of 
returns from elementary scatterers defined by 

 u 1t, t r 2 5 6
R

2

 
g 1x, r 2 f 1t 2 2R 1t r, x, r 2 /c 2dxdr. (1)

There are some major questions emerging from the model 
(1). How well can the kernel f 1 t 2 2R 1t r, x, r 2 /c 2  be approxi-
mated in a computationally efficient scheme? How well can 
the space continuity be accommodated in the discrete data 
representation (otherwise, what is the impact of interpola-
tion)? What is the role played by platform parameters with 

respect to the overall goal of 
accuracy and computational 
efficiency? The relevant works 
of the last two decades give us 
a clear perspective opening us 
a view over the next two major 
classes of algorithms. 

The range-Doppler (RD) algorithm and its variations [9]. 1) 
The RD algorithm was the first developed SAR processor and 
is probably still the most widely used SAR focusing tech-
nique. In the first stage, the range compression is applied; it 
is a matched filtering in the range direction, which may 
involve a partial correction of the range cell migration 
(RCM). The second stage, the azimuth focusing, is a range 
dependent matched filtering embedding a partial or total 
RCM correction. It includes 

Azimuth FFT. A set of one-dimensional (1-D) FFT • 
in the azimuth direction; the resulting data lie in the 
RD plane. 

RCM correction. In the RD domain, variations of the • 
point-to-radar distance induce a range-dependent Doppler 
frequency shift in the received signal. This stage includes 
range shifts, complex multiplications and interpolations. 

Azimuth compression. A matched filtering obtained by • 
multiplying the azimuth transformed data by the range-
dependent azimuth reference function in the frequency 
domain. 

Azimuth IFFT. The inverse 1-D set of FFTs to obtain the • 
final image. 
The 2) v 2 k and the fully 2-D algorithms. This class of algo-

rithms performs the processing in the frequency domain and 
the related techniques are often referred to as v 2 k [10] and 
2-D frequency domain [11] algorithms. The original idea 
underlying the v 2 k algorithm derives from the field of wave 

1
PRF

SAR Platform

ISO-Doppler

Hyperbolas

R(t ) R0

ISO-Range
Circles

Flight Track

Point
Scatterer

[FIG1] SAR system geometry.

A SIGNIFICANT ROLE IN THE THEORY 
OF SAR IMAGING IS PLAYED BY THE 

ACQUISITION GEOMETRY, INCLUDING 
HERE THE RELEVANT SIGNAL FEATURES 
INDUCED BY THE PLATFORM MOTION.
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propagation while the 2-D 
frequency domain approach 
is based on the stationary 
phase methods. Essentially, 
these algorithms rely on the 
following major steps: 

A 2-D FFT.•
Compensation of the system transfer function at mid •

range. This stage is often referred to as bulk compression.
A remapping in the frequency-wavenumber or in the •

2-D-frequency domain through a focusing operator (Stolt 
mapping) compensating for the range-dependent compo-
nent of the system transfer function. The change of vari-
ables requires an interpolation stage that is more 
complicate than that required by RCM correction in the 
RD algorithm. However, the Stolt mapping corrects all 
major 2-D signal range dependencies. 

A 2-D inverse FFT (IFFT). •
As final remark we underline that further implementations 

of the v 2 k and 2-D frequency domain algorithms have been 
more recently proposed, that mainly allow to achieve high com-
putational efficiency by applying the chirp scaling [12] and chirp 
z-transform [13] techniques. 

DESIGNING THE GPU CODE 
Graphics cards, originally designed as accelerators for computer 
graphics, have gradually evolved to support general-purpose 
computations, attracting the interest of scientific application 
developers as commodity, low-cost, and high-performance data-
parallel coprocessors. Therefore many-core GPU-based plat-
forms are becoming the enabling technology for massively 
parallel processing of SAR data, so that the most accurate pro-
cessing techniques will be rapidly available for real-time (possi-
bly airborne) applications at a low cost [14]. 

An important contribution in this direction is the recent intro-
duction of some programming environments whose architectures 
offer a layer of abstraction between application programmers and 
modern GPUs, developed with the aim to reduce GPU program-
ming complexity without sacrificing performance. Among these, 
we find two main actors, both adopting the ANSI C programming 
language with extensions for expressing data-parallel functions: 

Compute Unified Device Architecture (CUDA) from Nvidia, a)
a parallel computing architecture developed to exploit the 
power of GPUs as massively data parallel coprocessors with 
their own memory systems [15] 

Open Computing Language (OpenCL), an open standard b)
for general-purpose parallel programming intended for a por-
table and efficient access to the power of heterogeneous pro-
cessing platforms [16]. 
Both CUDA and OpenCL adopt a single program multiple 

data (SPMD) programming model providing a level of abstrac-
tion for GPU hardware architectures. In particular, CUDA 
extends the C programming language and allows the definition 
of functions, called kernels, each one to be executed in parallel 
by multiple, extremely lightweight threads running on the pro-

cessors of a GPU and organized 
into a computational grid of 
thread blocks. At each kernel 
call, the program can specify 
how many threads per block 
and how many blocks are to be 
launched. Blocks and grids may 

be structured into one, two or three dimensions and each block 
of the grid and each thread of a block have associated unique 
identification numbers. The threads of a block can synchronize 
their activities through an extremely lightweight barrier primi-
tive, while an implicit barrier synchronization serializes the exe-
cution of successive kernels. The blocks of a grid must be 
executable in any order, in parallel or in series. Memory has a 
hierarchical organization: every thread has a private local mem-
ory and every block has a shared memory accessible to all its 
threads. Moreover, all the threads of a program have access to a 
global memory, a read-only constant memory, and a read-only 
texture memory. 

At a lower abstraction level, when a CUDA kernel is called, the 
blocks of its computational grid are distributed for execution to 
the available GPU multiprocessors, with all threads of a single 
block resident on a single multiprocessor. Therefore, the number 
of blocks running in parallel is limited by the number of available 
multiprocessors. Within every multiprocessor, a number of scalar 
processor (SP) cores execute threads, further organized into 
groups called warps, by using a single instruction multiple thread 
(SIMT) execution model. Full efficiency is achieved when there is 
no branch diversion via a data-dependent conditional branch, as 
then all the threads in a warp, at each issue time, fetch and exe-
cute the same instruction. Instead, when there is a diversion, the 
different paths are serially executed, with a loss of efficiency. 

Even exploiting the described programming abstractions, the 
development of parallel applications to be efficiently executed on 
GPUs is much more difficult than writing sequential programs. 
Following [5], programmers should try to think in terms of 
structures and hierarchies, having in mind a work plan and some 
caveats. Some practical design guidelines are the following.

Identify the computational domain of interest as a struc-1)
tured hierarchy of threads that are executable in parallel. 

Write SPMD kernels, by remembering that the code of a 2)
kernel describes the actions to be executed by each single 
thread in the computational grid created at kernel call. 

Carefully plan memory usage and data transfers among 3)
the different levels of memory hierarchy. Global memory has 
a high latency (hundreds of clock cycles) and is prone to 
access conflicts when many threads work on the same data, 
but its performance can improve even of an order of magni-
tude when accesses from groups of threads meet alignment 
and ordering criteria, a feature referred to as coalescing. 
Moreover, data transfers from global memory to shared mem-
ory should be considered when the global memory is accessed 
multiple times by many threads. 

Accurately manage the divergences within each kernel 4)
code. As we shortly described, to avoid efficiency 

MANY-CORE PLATFORMS AND RELATED 
ARCHITECTURES ARE THE GENERAL 
FRAMEWORKS WHERE INTENSIVE 

APPLICATIONS CAN BE GENERATED 
AND OPTIMIZED.
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 penalties, code should be 
organized so that threads 
in the same warp do not 
give rise to divergent con-
ditional branches or at 
least minimize their number. Therefore, the complexities 
of SIMT thread execution can be largely ignored by pro-
grammers, but only if they give up the idea of obtaining 
peak performance. 
Following the concept scheme of the RD algorithm, the 

main aspects of the code design will be reviewed by discussing 
three code projects where the design strategies are analyzed 
and explained. 

CODE PROJECT 1 (FROM RAW DATA TO 
THE RD REPRESENTATION) 
This algorithm naturally decomposes in a large set of indepen-
dent computations. To obtain the best performance from a GPU, 
programmers have to find their own way to make the best use of 
resources in each single case. In particular, with respect to the 
parallelisms degree, as described above, the computation 
launched by a kernel call is distributed in a grid of thread 
blocks, each block containing the same number of threads, all 
executing the code of the kernel. The block and grid dimen-
sions, that are collectively known as the execution configura-
tion, can be set at kernel invocation and are typically based on 
the size and dimensions of the data to be processed. 

With respect to GPU memory resources, the programmer 
can decide to exploit different memory spaces, taking into 
account their different scope, dimension, and bandwidth. In 
particular, beyond the per-streaming multiprocessor register 
file (that contains a large number of registers dynamically allo-
cated to threads), and a slower per-thread local memory auto-
matically used when local registers are not sufficient, the 
threads of a block can allocate data in a small dimension, high 
bandwidth per-block shared memory. While threads in a block 
can cooperate through the shared memory and synchronize 
with a barrier primitive, different blocks execute  independently 
and in parallel, without any enforced order among them. 
Moreover, all the threads may access a global memory. Un -
fortunately, global memory is the slowest of all memory spaces 
and is not cached. 

So, accesses to global memory have high latencies that can 
be partially hidden by defining execution configurations that 
allow for thousands of blocks and hundreds of threads per 
block, and by carefully designing kernels so to 1) use the 
shared memory, both because of the speed of R/W operations 
and the access scope granted to the entire thread block, 
2) transfer data from global memory to shared memory and 
vice-versa in blocks avoiding a large number of transactions 
and 3) use the highest number of arithmetic operations on data 
read by each thread. This allows the GPU to perform arithmetic 
operations in a better way, while hardly minimizing the cost 
and the latency of memory operations, and grants an excellent 
increase in performances. 

Having in mind these fea-
tures, the GPU implementation 
of this processing subtask is 
organized by first sectioning 
the data matrix in subswaths, 

as in Figure 2 and then by executing FFT computations in 
batched mode. The batched-mode FFT kernel will be illustrated 
later in Code Project 3; essentially, this means that a large num-
ber of FFTs are computed in parallel, or, more correctly, that a 
large amount of data belonging to different FFTs are computed 
in parallel. 

Define a range gate as the set of Na radar returns that are 
mapped into a column of the data matrix. Equivalently, an azi-
muth gate is the set of Nr radar returns that are mapped into a 
row of the data matrix (see Figure 2). The matched filtering in 
the frequency domain can be computed very efficiently because 
all azimuth cells require the same (Fourier transformed) range 
reference function. This task is executed in parallel by a kernel 
where each thread reads a range gate, executes the product 
between range gate values and the corresponding value of the 
range reference function (it is the same for each range gate!) 
and write the result in the global memory. To optimize usage of 
global memory, reading-from and writing-to global memory are 
coalesced, with a contiguous region of memory accessed by a 
block of threads. This is obtained by opportunely using thread 
indices to write memory access instructions so that the kth 
thread in each half warp accesses the kth element in the block 
being read. Looking at the excerpt of the range compression 
kernel, we note 

the coalesced read of the frequency transformed raw data a) 
(code lines 8–9) 

the coalesced write of the compressed data (code lines b) 
10–11) deriving from the alignment of threads index and 
memory blocks (code lines 2 and 8–11). 

A
zi

m
ut

h

Range

Range Gate

Azimuth Subswaths Processed Sequentially

SAR ReturnsAzimuth Gate

[FIG2] Matrix deployment of SAR data and scheme of the block 
processing strategy.

THE SAR SIGNAL ACQUISITION 
IS A MAPPING FROM THE OBJECT SPACE 

TO THE DATA SPACE. 
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RANGE COMPRESSION KERNEL (EXCERPT) 
1.  __global__ void RangeCompression 

(cufftComplex *rawVecDev, cufftComplex 

*chDev, int nrfft, int nazft) {

2.   int indexThread = blockIdx.x *  

    blockDim.x+threadIdx.x;

3.  cufftComplex cv;

4.  __shared__ cufftComplex ch;

5.  if(indexThread<nazft) {

/* loop over 

range gates */

6.   for (int i=0; i < 

 nrfft; i++){

/* read a 

sample of 

matched ilter 

in the shared memory */

7.     ch = chDev[i];

8.      cv.x = 

   rawVecDev[indexThread + 

i*nrfft].x;

9.     cv.y = 

   rawVecDev[indexThread+i*nrfft].y;

10.    rawVecDev[indexThread+i*nrfft].x = 

             cv.x*ch.x - cv.y*ch.y;

11.    rawVecDev[indexThread+i*nrfft].y = 

             cv.x*ch.x + cv.y*ch.y;

12. }

13. }

14.}

CODE PROJECT 2 (MIGRATION CORRECTION) 
The RCM correction in the RD plane is a 1-D interpolation prob-
lem. The evaluation of the signal values along the migration path 
is usually carried out with an interpolation function of a suffi-

ciently high order (an eight-order sinc kernel is accurate even for 
the most demanding applications). Fortunately, all points lying 
on the same straight path collinear with the radar flight track 
exhibit, with a good approximation, the same migration curve; a 
symmetry that can be usefully exploited in the design of an effi-
cient parallel version of the RCM correction algorithm. Another 
feature is that there is a repeated use of the data values during 
the interpolation of adjacent range gates. Therefore, we are quite 
naturally guided to assign a thread to a range gate and to transfer 

chunks of data from global 
memory to shared memory 
(this method, referred to as til-
ing, is used to circumvent the 
tradeoff between the large 
global memory and the small 
but distributed shared memo-

ry; data are partitioned into smaller subsets so that each tile fits 
into the shared  memory and the kernel computations on that tile 
can be  carried out independently). 

Our planning requires that the kernel executes computations 
on a range gate; we define a block as a collection of 64 threads 
and a grid of as many blocks to include all the range gates. A tile 
is the subset of range cells spanned by a block. The kernel 
sequentially moves a tile from the global memory to the shared 
memory, executes interpolation of the data  values using eight 
surrounding samples (four from each side), and writes the result 
in the global memory. The read and write operations cannot be 
coalesced because threads accesses matrix elements column-wise 
(a range gate is a column of the matrix) but in  terpolation is car-
ried out using samples that are adjacent in a row-major arrange-
ment. Although the relaxed coalescing restrictions for CUDA 
compute capability greater than 1.1 allow strided or even random 
access in a memory segment, this cannot be obtained in our case. 

Access to data from different threads is also subject to pos-
sible bank conflicts because requests to different banks 

[FIG3] Conflict–free access for eight-samples interpolation required in RCM correction.
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Memory Access K

Memory Access K + 1

PROGRAMMERS SHOULD TRY TO 
THINK IN TERMS OF STRUCTURES AND 

HIERARCHIES, HAVING IN MIND A WORK 
PLAN AND SOME CAVEATS.
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address cannot be served simultaneously; if this happens, the 
hardware serializes the accesses and performance decrease. 
To achieve close to maximum speed, memory-read is orga-
nized as in Figure 3 where it is evident that a memory 
address is always accessed sequentially. During the memory 
accesses k, k 1 1, c,k 1 9, thread one reads data values 
rc 1n 2 4 2 , rc 1n 2 3 2 , c,rc 1n 1 4 2  that are used sequential-
ly for interpolation on the nth sample. Thus the kernel com-
putes sequentially 

xk 1n 2 5 xk21 1n 2 1 rc 1n 2 i 2  sinc 1 i 2 i 5 1, c,9 . (2)

The excerpt of the RCM correction kernel reports the 
CUDA code 

Define the number of data samples to be copied in the a)
shared memory. The interpolation order is eight (code-line 1). 

Samples in the azimuth b)
direction are copied in the 
shared memory (tiling) 
(code-line 4). 

Synchronize all threads c)
for write in the shared mem-
ory (code-line 5). All threads 
should have completed the 
copy before starting the 
interpolation. 

Read from shared memory, bank conflicts are avoided d)
because threads access different memory locations (code–
lines 8–9). 

Interpolation is carried out, I_STEP is the sampling rate of e)
sinc interpolator and frac is the fractional part of the range 
migration (code-lines 7–13). 

RCM CORRECTION KERNEL (EXCERPT) 
1. __shared__

float2 rcVecShared[blockDim.x+8];

/* blockDim.x is 64 */

/*loop on azimuth gates

2. for (j=0; j < nazft; j++){

3.  int ir2 = threadIdx.x+4;

4. rcVecShared[ir2] =

             rcVecDev[ir1*nazft+j];

/* ir1 is the center sample 

   for migration */

5.  __syncthreads();

6.  azl = rcVecShared[ir2];

7.  for(k=1; k <= ORDER/2; k++){

     /*  sinc interpolation ORDER is 9 */

8.   rc1=rcVecShared[ir2+k];

9.   rc2=rcVecShared[ir2-k];

10.  indx = nintD(I_STEP*(frac-k));

11.  azl.x +=(rc1.x+rc2.x)*sincDev[k-indx];

12.  azl.y +=(rc1.y+rc2.y)*sincDev[k-indx];

13. }

14.}

THE SEQUENTIAL PSEUDOCODE IS HEREAFTER 
REPORTED FOR COMPARISON 
for each range gate

 for each azimuth sample

  for i<interpolation order

   use sinc to interpolate the 

          azimuth sample

  end

 end

end

We are now on the way to complete the SAR processing with 
the azimuth compression, which requires a minor design ef-
fort. After range migration correction, almost all range- azimuth 
dependencies have been compensated and the matched filtering 
can be easily implemented with a range-dependent function. 

From the computational 
point of view, we perform a) a 
set of N -points complex FFTs 
of the range dependent refer-
ence function, with N  defined 
by the subswath length, b) a 
set of complex multiplications, 
and c) a set of IFFTs. 

CODE PROJECT 3 (FFTCT CODE) 
The RD algorithm makes an intensive use of 1-D FFT and IFFT 
for complex data of radix-2 size. In CUDA-based implementations, 
a possible approach is the direct use of NVIDIA CUFFT [17], a 
library that delivers a parallel implementation of complex and 
real data transforms in one, two, and three dimensions. Based on 
the FFTW library [18], it executes a plan, i.e., an optimal execu-
tion configuration for the specific transform with respect to the 
data size, the data domain (complex or real), and the hardware. 
CUFFT computes FFTs in batching mode, an approach where 
GPU resources are exploited through the concurrent computa-
tion of a great amount of (typically independent) data. Best per-
formances are achieved for a dense arithmetic throughput where 
context switch operations are automatically performed by the 
GPU controller among, for example, threads of a batch waiting 
for a costly read or write to global memory or threads of another 
batch ready to execute an arithmetic operation. 

The main limitation of CUFFT is that there is no specific 
optimization with respect to the GPU resources. The horizon 
of imaginable improvements possibly achieved by more tai-
lored implementations moved us to investigate a very basic 
but quite optimized algorithm for FFT computation. 

The proposed library (FFTCT) is based upon the work pre-
sented in [19] by Volkov and Kazian, which, in turn, relies 
upon the Cooley and Tukey framework, and currently supports 
transform of batched 1-D arrays of complex values. The paral-
lel implementation rescales the original problem into a large 
number of small radix FFTs, where an efficient use of register 
files and the per-block shared memory is allowed. The main fea-
tures of the approach can be summarized as follows: 

THERE ARE TWO MAIN REASONS 
WHY IT IS QUITE DIFFICULT TO 
DETERMINE THE EXECUTION 

CONFIGURATION ACHIEVING CLOSE 
TO OPTIMAL PERFORMANCE IN A 

GPU-BASED APPLICATION.
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use different kernels for managing different vector sizes  ■

need of a final per-batch transposition  ■

code optimizations, such as shifts for power-of-two  ■

divisions or modulus operations, loop unrollings, and 
so on.

The model assigns each thread a little subset of values from the 
input arrays, to compute the base-case transform. 

An example is quite clarifying: for a 4,096-points, radix-8 
FFTs are required, thus a single thread is charged for the follow-
ing operations on eight data samples: 

read data from global memory and save them in the fast a)
register file (see code lines 4–7) 

calculate their FFT using a hard-coded, optimized routine b)
(called at code line 8)

multiply by twiddle factor (see code lines 9–12). c)

Finally, values are reordered and transferred back to global mem-
ory (see code lines 13–17) for a global per-batch transposition. 
This computation is performed by a separate parallel kernel. 

FFT KERNEL (EXCERPT) 
1. __global__

void fftff_8_points(cmplxValue *v ) { 

2.  cmplxValue temp[8]; 

3. /* offset computation in the array v 

   of the 8 values to store in the 

       temp array /* code omitted */ 

4.  #pragma unroll 8 

5.  for( int i = 0; i < 8; i++ ) 

6.   temp[i] = v[i<<9]; 

7.  }

8.  radix8_fft( temp ); 

9.  #pragma unroll 8 

10. for( int j = 1; j < 8; j++ ) 

11. temp[j] = temp[j] * twiddleFactor_8(

    offset, j, 4096,FFTFF_FORWARD); 

12. }

13. #pragma unroll 8 

14. for( int i = 0; i < 8; i++ ){ 

15.  int ind = indexReverse_8(i); 

16.  v[i<<9] = temp[ind]; 

17. } ...

Experimental results of FFTCT computations delivered by this 
implementation (without the final transposition) show a typi-
cal speedup of 3.63 compared to CUFFT library in CUDA ver-
sion 1.1, for the same testbed adopted in the experimental 
results section. 

EXTENSIONS RELATED TO 
2-D SAR PROCESSING 
In this class of algorithms, all phases of data compensation and 
interpolation are moved to the 2-D Fourier domain. The per-
spective is quite different, but we do not expect a necessarily 
more complex computational scenario. 

The technique for evaluating 2-D FFTs (direct and inverse) 
on a GPU is straightforward: simply, 1-D FFTs are executed in 
parallel along the azimuth gates, then 1-D FFTs are executed in 

parallel along the range gates. 
The Stolt mapping remaps the uniform-

ly spaced samples, in the (v, kx) domain, 
to nonuniformly spaced samples in the 
( kr, kx ) domain that are not suitable for 
the inverse transformation stage. An inter-
polation, similar to that introduced in the 
RD algorithm may solve the problem, but 
in general, it should be noted that the 
Stolt mapping may produce quite uneven-
ly mapped samples and a particular atten-
tion should be payed in the application of 
such interpolator. 

[TABLE 2] ARCHITECTURAL CONSTRAINTS IN THE NVIDIA 
CUDA PLATFORM IMPLEMENTATION.

MAXIMUM NUMBER OF THREADS PER BLOCK 512
MAXIMUM SIZES OF THE X, Y, AND Z DIMENSIONS 
 OF A THREAD BLOCK 512, 512, 64
MAXIMUM SIZE OF EACH DIMENSION OF A GRID 
 OF THREAD BLOCKS 65,535
WARP SIZE 32 THREADS
NUMBER OF REGISTERS PER MULTIPROCESSOR 16,384
SHARED MEMORY AVAILABLE PER 
 MULTIPROCESSOR 16 KB INTO 16 BANKS
CONSTANT MEMORY 64 KB
MAXIMUM NUMBER OF ACTIVE BLOCKS PER 
 MULTIPROCESSOR 8
MAXIMUM NUMBER OF ACTIVE WARPS PER 
 MULTIPROCESSOR 32
MAXIMUM NUMBER OF ACTIVE THREADS PER 
 MULTIPROCESSOR 1,024

[TABLE 3] SAR PROCESSOR PARAMETERS USED FOR 
SIMULATION SETUP.

SATELLITE NAME ERS-2
PULSE REPETITION FREQUENCY (PRF) 1,679 [HZ]
RANGE COMPRESSION FFT LENGTH Nr 4,096 [SAMPLES]
RANGE MATCHED FILTER LENGTH 704 [SAMPLES]
AZIMUTH COMPRESSION FFT LENGTH Na 4,096 [SAMPLES]
AZIMUTH MATCHED FILTER LENGTH 1,103 [SAMPLES]
NUMBER OF AZIMUTH PATCHES 10
COMPUTATION WORD LENGTH COMPLEX 32 [BIT]

[TABLE 4] EXECUTION TIME FOR THE MAIN SECTIONS OF THE PARALLEL SAR 
PROCESSOR. THE CONFIGURATION ON NVIDIA TESLA C1060 IS TUNED FOR 
BEST PERFORMANCE WITH ERS-2 DATA. REFERENCE WORKSTATION FOR SAR 
PROCESSOR (NONPARALLELIZED, NONOPTIMIZED) IS 3.00 GHZ, INTEL CORE 2 
DUO E6850, 4 GB RAM.

CUDA KERNEL
# THREADS 
PER BLOCK GPU mS CPU mS SPEEDUP

RANGE COMPRESSION 64 0.9 3 106   6.6 3 106   7.33

PARAMETER ESTIMATION 32 7.1 3 102   3.1 3 104 44.63

AZIMUTH MATCHED FILTER 64 5.9 3 105   5.0 3 106   8.53

RCMC AND AZIMUTH COMPRESSION 64 1.7 3 106 31.3 3 106 18.43

FFTCT 4.4 3 105    21 3 106 47.83

TOTAL FOCUSING 4.4 3 106 70.1 3 106 15.93
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RESULTS AND 
OPTIMIZATION KEYNOTES 
There are two main reasons why 
it is quite difficult to determine 
the execution configuration 
achieving close to optimal perfor-
mance in a GPU-based applica-
tion. The first is that there is not a linear dependence between 
performance and block size [20], the second is that generally, 
there is a domain of influence among the different parameters 
of a GPU, so changing a design parameter may affect the posi-
tion of the optimum point of work along other coordinates of 
the parameter space. For example, a loop unrolling removes 
dynamic instructions but affects internal memory usage and, 
thus, threads execution. 

For these reasons, the optimization has been carried out 
using an empirical (constrained) search, with a reduced code 
running many times with different parametric templates. Given 
the relative simplicity of the optimization task, we may consider 
a two-levels strategy [21], based on 

optimization of the execution configuration of the single a)
kernels, that is the number of thread blocks and the number 
of threads per block 

optimization of loops. b)
All the optimizations have been checked automatically, using a 
simple branch-pruning strategy to constrain the optimization 
space and improve search efficiency. 

We selected the Nvidia Tesla C1060 as device board; it is a 
high-performance GPGPU offering 30 multiprocessors, each 
one with eight core processors. Other device parameters as 
well as CUDA version capabilities are shown in Table 2. 
Performance of the SAR processor have been evaluated with 
reference to a standard ERS-2 satellite pass with parameters as 
in Table 3. 

Now is the time to make some final considerations on how 
the effort is rewarded by good performances. It is necessary to 
explain the terms of comparison, especially  regarding what is 
available in terms of standard or multithreaded SAR process-
ing software. Un fortunately, SAR processors are precious 
works of art, often covered by patents with undisclosed source 
code. This makes the comparison issue quite unfavorable. Our 
reference SAR processor is a commercial open-source product 
widely used by research institutions and data processing agen-
cies, so that we are quite confident on the reference algorithm 
and on the code section we are comparing. It is a nonparallel, 
RD algorithm performing the same steps as our GPU code. 
Results in Table 4 show, for the main steps of processing, the 
performance of the reference and GPU processors and the 
speedup obtained through the GPU implementation. The ref-
erence system is a single workstation, equipped with Intel 
Core 2 Duo E6850 at 3.00 GHz (FSB at 1,333 MHz and 4 MB of 
L2 cache), 4 GB RAM with Linux Ubuntu 9.04 OS. The image 
is an ERS-2, 14 July 1995 pass, centered in the Campania re-
gion (Italy) and the size of the raw data matrix is 26,880 3

4,912 azimuth-range gates. 

A few comments are in 
order, concerning results in 
Table 4. First, the moderate 
speedup in the range com-
pression kernel is not sur-
prising: most of the time is 
used to move data from CPU 

to the GPU device. This is also what happens in the azimuth 
matched filter stage. Second, the parameter estimation kernel 
is very quick; this is also due to extensive use of intrinsic math 
functions implemented in the special function unit of the GPU. 
Third, the FFT is no longer the key aspect of parallel SAR pro-
cessing. Attention should be moved toward less canonical 
aspects like memory transactions and computational intensity. 

CONCLUSIONS 
Our hope is that the reader has gained a clear idea on how to 
design fine-grained parallel processors for near real-time SAR 
focusing. Without being comprehensive, we have tried to focus 
on methodologies behind the technicalities, with the aim of 
unveiling the core features of parallel SAR processing. We 
believe that the reader that is confident with this basic 
approach may now proceed safely to develop one of the differ-
ent focusing algorithms or to switch to applications related to 
SAR data where we find a great number of techniques, ranging 
from ocean studies to forest monitoring and high-accuracy, 
high-resolution surface deformation analysis. 

If we try to see further away, including small satellites and 
airborne remote sensing systems, we may look at an increasing 
number of applications where the enabling technology is high-
performance computing in a small box. The SAR images will 
often be required in less than one second for real-time opera-
tions, and we realize that there is a formidable chance for this, 
offered by the GPU technology but, as we mentioned earlier in 
the introduction, there are lot of things to still be done. 
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Video Coding 
on Multicore 
Graphics Processors 

[Ngai-Man Cheung, Xiaopeng Fan, Oscar C. Au, and Man-Cheung Kung]

T
oday, video coding [1]–[5] 
has become the central 
technology in a wide range 
of applications. Some of these 
include digital TV, DVD, Internet 

streaming video, video conferencing, distance 
learning, and surveillance and security [6]. A vari-
ety of video coding standards and algorithms have 
been developed (e.g., H.264/AVC [5], VC-1 [7], MPEG-2 
[8], AVS [9]) to address the requirements and operating charac-
teristics of different applications. With the prevalent applica-
tions of video coding technologies, it is important to investigate 
efficient implementation of video coding systems on different 
computing platforms and processors [10], [11]. 

Recently, graphics processing units (GPUs) have emerged 
as coprocessing units for central processing units (CPUs) to 
accelerate various numerical and signal processing applica-
tions [10], [12]–[14]. Modern GPUs may consist of hundreds 
of highly decoupled processing cores capable of achieving 
immense parallel computing performance. For example, the 
NVIDIA GeForce 8800 GTS processor has 96 individual 
stream processors each running at 1.2 GHz [15]. The stream 

processors can be grouped together to perform single instruc-
tion multiple data (SIMD) operations suitable for arithmetic 
 intensive applications. With the advances in the GPU pro-
graming tools such as thread computing and C programming 
interface [16], [17], GPUs can be efficiently utilized to per-
form a variety of processing tasks in addition to conventional 
vertex and pixel operations. 

With many personal computers (PCs) or game consoles 
equipped with multicore GPUs capable of performing general 
purpose computing, it is important to study how the GPU can be 
utilized to assist the main CPU in computation- intensive tasks 
such as video compression/decompression [18]. In fact, as high-
definition (HD) contents are getting more popular, video coding  Digital Object Identifier 10.1109/MSP.2009.935416

[The challenges 
  and advantages 
  of the GPU
  implementation]
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would require more and more 
computing power. Therefore, 
leveraging the computing 
power of GPUs could be a cost-
effective approach to meet the 
requirements of these applica-
tions. Note that with dozens of available video coding standards 
(H.264, MPEG-2, AVS, VC-1, WMV, DivX) it is advantageous to 
pursue a flexible solution based on software. 

INTRODUCTION
Focusing on software-based video coding applications running 
on PCs or game consoles equipped with both CPUs and GPUs, 
this article investigates how GPUs can be utilized to accelerate 
video encoding/decoding. Recent work has proposed applying 
multicore GPUs/CPUs for various video/image processing appli-
cations. Table 1 summarizes some of them. In this article, we 
survey prior work on video encoding and decoding to illustrate 
the challenges and advantages of the GPU implementation. 
Specifically, we discuss previous work on GPU-based motion 
estimation (ME), motion compensation (MC), and intrapredic-
tion. Our focus is on how the algorithms can be designed to 
harness the massive parallel processing capability of the GPU. In 
addition, we discuss previous work on partitioning the decoding 
flow between CPUs and GPUs (for completeness, we also report 
the speedup results in previous work. However, since the GPU/
multicore software/hardware technologies have evolved dramat-
ically over the last few years, some of the results could be out-
dated). After that, we investigate a GPU-based fast ME. We 
discuss some strategies to break dependency between different 
data units and examine the tradeoff between speedup and cod-
ing efficiency. 

BACKGROUND

VIDEO CODING
The latest video coding standards have achieved state-of-the-art 
coding performance. For example, H.264/AVC, which is the lat-
est international video coding standard approved by the 
International Telecommunications Union (ITU-T) and the 
International Organization for Standardization/International 
Electrotechnical Commission (ISO/IEC), typically requires 60% 
or less of the bit rate compared to previous standards to achieve 
the same reconstruction quality [5]. Other advanced video cod-
ing algorithms, such as AVS-Video developed by the Audio and 
Video Coding Standard Working Group of China [9], or VC-1 

initially developed by Microsoft 
[7], have also achieved com-
petitive compression perfor-
mance. Next, we provide an 
overview of the H.264 video 
coding standard. 

The H.264 video coding standard is designed based on the 
block-based hybrid video coding approach [2], [5], which has 
been used since earlier video coding standards. The coding 
algorithm exploits spatial correlation between neighboring 
pixels of the same picture. In addition, it also exploits temporal 
correlation between neighboring pictures in the input video 
sequence to achieve compression. Figure 1 depicts the encoder 
block diagram. The input picture is partitioned into different 
blocks, and each block may undergo intraprediction using 
neighboring reconstructed pixels in the same frame as predic-
tor. H.264 supports intraprediction block sizes of 16 3 16, 
8 3 8, and 4 3 4, and it allows different ways to  construct the 
prediction samples from the adjacent reconstructed pixels. 
Alternatively, the input block may undergo interprediction 
using the reconstructed blocks in the reference frames as pre-
dictor. Interprediction can be based on partition size 
of 16 3 16, 16 3 8, 8 3 16, 8 3 8, 8 3 4, 4 3 8, or 4 3 4. 
Displacement between the current block and the reference 
block can be up to quarter-pel accuracy and is signaled by the 
motion vector and the reference picture index [2]. 

The prediction residue signal from intraprediction or inter-
prediction would then undergo transformation to decorrelate 
the data. In H.264, a 4 3 4 separable integer transform is used, 
which is similar to 4 3 4 DCT but avoids the mismatch between 
forward and inverse transform. Then, the transform coefficients 
would be scalar quantized and zig-zag scanned. The context-
adaptive variable length coding (CAVLC) may then be employed 
to entropy code the scanned transform coefficients. CAVLC is an 
adaptive coding scheme, and it may switch between different 
codeword tables during encoding depending on the values of the 
already-coded elements. Alternatively, the transform coefficients 
may be coded by context-adaptive binary arithmetic coding 
(CABAC). To mitigate blocking artifacts, an adaptive in-loop 
deblocking filter would be applied to the reconstruction from 
the feedback loop. 

GPUS

Originally designed as specialized hardware for three-dimen-
sional (3-D) graphics, GPUs have recently emerged as copro-
cessing units to accelerate arithmetic intensive applications in 

[TABLE 1] VIDEO AND IMAGE PROCESSING APPLICATIONS ON MULTICORE PROCESSORS.

APPLICATIONS EXAMPLES 
VIDEO ENCODING MOTION ESTIMATION [19]–[23], INTRAPREDICTION [24]–[27], TRANSFORM [28] 
VIDEO DECODING MOTION COMPENSATION [10], [29], DECODER DESIGN [10], [30]–[32] 
HIGH DYNAMIC RANGE IMAGES TEXTURE COMPRESSION [33] 
VIDEO WATERMARKING REAL-TIME VIDEO WATERMARKING SYSTEM [14] 
SIGNAL PROCESSING KERNELS MATRIX AND VECTOR COMPUTATIONS [12], FFT, AND CONVOLUTION [13] 
IMAGE ANALYSIS HOUGH TRANSFORM [34], RADON TRANSFORM [35], [36], CHIRPLET TRANSFORM [35], FEATURE EXTRACTION [37]

LEVERAGING THE COMPUTING POWER 
OF GPUs COULD BE A COST-EFFECTIVE 

APPROACH TO MEET THE REQUIREMENTS 
OF VIDEO CODING.
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PCs or game consoles. A key feature of modern GPUs is that 
they offer massive parallel computation capability through 
hundreds of highly decoupled processing cores [38]. For exam-
ple, NVIDIA GeForce 8800 GTS processor consists of 96 stream 
processors each running at 1.2 GHz [15]. 

The design philosophy of GPUs is quite different from that 
of general-purpose CPUs. Throughout the years, GPUs have 
been designed with an objective to support the massive num-
ber of calculations and huge amount of data transfer required 
in advanced video games [38], [39]. In addition, they need to 
meet the stringent cost requirement of consumer applications. 
Therefore, GPUs have become very cost effective for arithmetic 
computation. Furthermore, the peak computation capability 
of GPUs is increasing at a faster pace than general-purpose 
CPUs (Figure 2). 

Besides arithmetic computation capability, there are other 
fundamental differences between CPUs and GPUs. First, to 
address a wide range of applications, general-purpose CPUs 
would use many transistors to implement sophisticated control 
hardware that can support some advanced control functions 
such as branch prediction [40]. On the contrary, GPUs would 
instead devote chip area to arithmetic computation. As a conse-
quence, GPUs may not perform well for programs with many 
conditional statements. Second, CPUs use a lot of chip area to 
implement cache memory to reduce instruction and data access 
latencies. GPUs, on the other hand, use much simpler memory 
models but rely on the high degree of parallelism in an applica-
tion to hide the memory access latency. Thus, it is central to 
expose a large amount of data parallelism in the GPU programs. 

GPU-ASSISTED VIDEO CODING: CHALLENGES
Following from the previous discussion, it is clear that only 
certain types of computation are suitable for the GPU execu-
tion. In particular, to fully harness the computational power in 
the GPU, one would need to design the algorithm to utilize the 
massive number of processing cores in parallel. As an example, 
a good application may run up to thousands of threads simulta-
neously on a high-end GPU so as to keep all the processing 
cores working continuously [38]. Therefore, one of the main 
challenges to utilize the GPU for video coding is how to struc-
ture a certain module to expose as much data parallelism as 
possible. Note that this may not be trivial for some video cod-
ing modules since  dependency may exist between different data 
units in the computation, as pointed out by previous work [22], 
[24], [25], [27]. Moreover, flow control instructions (if, 
switch, do, for, while) can significantly degrade the 
performance of the GPU execution, since such instructions may 
cause different threads to follow different execution paths and 
the execution would need to be serialized [39]. Therefore, using 
GPUs for entropy coding such as CAVLC could be challenging. 
Furthermore, an implementation should try to avoid as much 
as possible off-chip data access, which may incur considerable 
latency (recall that the GPU is not optimized for memory access 
latency). For example, some GPUs may require from 400 to 600 
cycles latency for off-chip memory access (while they can 

 perform single-precision floating-point multiply-add in a single 
cycle in each core) [39]. Note that it is possible to hide such 
memory access latency if there are enough independent arith-
metic computations. Therefore, if possible, a video coding mod-
ule should be implemented with high arithmetic intensity 
(which is defined as the number of mathematical operations 
per memory access operation). In some situations, it could be 
more efficient to recalculate some variables rather than loading 
them from the off-chip memory. 

PREVIOUS WORK
In this section, we review previous work on applying GPUs for 
video coding. Previous work has proposed to utilize GPUs to 
undertake ME [19]–[22], intraprediction [24]–[27], and MC 
[10], [29]. Note that ME, intraprediction, and MC are some of 
the most computation-intensive modules in interframe encod-
ing, intraframe encoding, and decoding, respectively. 
Therefore, it is important to understand how these modules 
can be efficiently implemented on GPUs. In addition to these 

[FIG2] Peak computation capability of GPUs and CPUs [39], [41].
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modules, GPU-based discrete 
cosine transform (DCT) has 
been discussed in [28]. There 
seems to be no previous work 
on the GPU-based deblocking 
filter. Since the deblocking fil-
ter involves some conditional 
statements to determine the strength of the filter at each block 
boundary, some study may be necessary to determine its per-
formance on GPUs. 

MOTION ESTIMATION ON GPUS

ME is one of the most computation-intensive modules in video 
encoding and there has been a lot of interest to offload it to 
GPUs to improve the overall encoding performance. Earlier 
work in this area focuses on ME algorithms where sum of 
absolute differences (SAD) is used in block matching to deter-
mine the best candidate. SAD computation can be easily paral-
lelized as each individual pixel in the current block is 
compared independently with the corresponding pixel in the 
candidate reference block. Note that SAD-based ME is com-
monly used in MPEG-1/2 and H.263. 

More recent video encoding algorithms, on the other hand, 
may employ rate-distortion (RD)-optimized ME that considers 
both the rate and distortion in selecting the best candidate. For 
example, one common metric is the weighted sum of the SAD 
(between the current block and the candidate block) and the 
encoding rate of the motion vectors (MVs). In the H.264 standard, 
predictive coding is used to encode the MV of the current block, 
and the predictor is the median of the MVs in the adjacent left, top 
and top-right blocks. Therefore, in RD-optimized ME, the MVs of 
the neighboring blocks would need to be first determined. Then, 
based on the median of the neighboring MVs, the encoding rate of 
the current MV can be determined and the cost of the current 
block can be computed in the block matching. Such dependency 
makes it difficult to utilize GPUs for RD-optimized ME. We will 
discuss example designs to address this issue. 

GPU-BASED ME BASED ON LOOP UNROLLING
To increase the degree of parallelism, [20] proposed to unroll the 
computation loop in SAD-based full search ME. The ME computa-
tion loop is shown in Figure 3, and loop unrolling is possible since 

there is no dependency between 
individual macroblocks (MBs) 
when SAD is used as metric for 
matching. Due to resource con-
straint in earlier GPUs, the algo-
rithm in [20] needs to be 
partitioned into two separate 

passes so that the GPU memory can accommodate the instruc-
tions. The experiments in [20] compared full search ME on an 
INTEL Pentium 4 3.0 GHz CPU and on a NVIDIA GeForce 6800 
GT GPU, and the results suggest the GPU-based ME can achieve 
up to two times and 14 times of speedup for integer-pel and half-
pel ME, respectively. The considerable improvement in the half-pel 
ME is due to the fact that [20] utilizes the built-in hardware sup-
port in the GPU for interpolation. 

Note that with loop unrolling it is possible to schedule a mas-
sive number of parallel threads (subject to device’s constraint). 
Consider an example to assign one thread to compute one SAD 
between an MB and a candidate block in the search window. Then, 
in the case of full search, the number of independent threads could 
be as large as the number of MBs times the number of candidate 
blocks per MB (search window size). For HD 720p videos 
(1,280 3 720, 3,600 MBs per frame), and a search range of 64 
(129 3 129 search window size), the number of threads could be 
as many as 3,600 3 129 3 129 5 59,907,600. 

Although full search is highly parallel, it may have only little 
practical interest because of the prohibitive computational require-
ment, especially for HD video contents. Moreover, when MBs are 
processed independently and MVs are computed concurrently in 
different threads, it becomes difficult to use motion vector predic-
tion, where MVs of neighboring blocks are used to initialize the 
search of current MB, and this may affect ME performance when 
the search window is small. In the next section, we will discuss the 
GPU implementation of fast ME, which can (in general) achieve 
comparable coding performance as full search with a much small-
er number of computations [42]. 

GPU-BASED ME BASED ON 
REARRANGING THE ENCODING ORDER
Due to the dependency between adjacent blocks as discussed, 
RD-optimized ME commonly employed in recent video coding 
standards cannot be parallelized simply by loop unrolling. In [21] 
and [22], rearrangement of the encoding order is proposed to 
increase the degree of parallelism. In these algorithms, instead of 
processing the blocks in the conventional raster-scan order, the 
blocks are processed along the diagonal direction to address the 
dependency issue. This is shown in Figure 4 for the case of 4 3 4 
ME. In their proposed encoding order, at each iteration, the ME 
will process all the blocks of which the neighboring blocks (left, 
top, and top-right) have been processed. That is, the ME processes 
at each iteration all the blocks of which neighboring MVs have 
been computed and median predictors are available. By processing 
blocks along the diagonal direction the proposed rearrangement 
can substantially increase the degree of parallelism. For example, 
[22] reported that the maximum degree of parallelism can be up 

Loop (rows of macroblocks) {
Loop (columns of macroblocks) {

Loop (rows of search range) {
Loop (columns of search range) {

SAD computation;
SAD comparison;

}
}

}
}

[FIG3] Pseudocode of conventional integer-pel ME based 
on SAD.

WE DISCUSS SOME STRATEGIES 
TO BREAK DEPENDENCY BETWEEN 

DIFFERENT DATA UNITS AND EXAMINE 
THE TRADEOFF BETWEEN SPEEDUP AND 

CODING EFFICIENCY.
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to 44, 160, and 240 for CIF 1352 3 288 2 , 720p, and 1080p video, 
respectively. Note that for each 4 3 4 block, individual search 
points in the search window can be examined in parallel (in the 
cases of full search or some fast search with regular sampling of 
search window). Therefore, with block-level parallelism of 240 (i.e., 
240 4 3 4 blocks in the current frame can be processed in paral-
lel) and a search range of 64 (129 3 129 search window size), 
240 3 129 3 129 5 3,993,840 independent threads can be 
launched simultaneously in principle. Pixel level parallelism can 
also be implemented, e.g., by decomposing the SAD calculation 
into several threads. The results in [22] suggest that over 40 times 
of speedup can be achieved in a system with an INTEL Pentium 4 
3.2 GHz CPU and a NVIDIA GeForce 8800 GTS graphics processor. 
Note that Pentium 4 CPUs are relatively slow compared with more 
recent CPUs. Also, the program code on Pentium might not have 
been well optimized. Thus the reported speedups in [22] could be 
higher than those w.r.t. more efficient CPU implementation. 
Nonetheless, the results still suggest RD-optimized ME can be 
implemented efficiently on GPUs. 

RD-OPTIMIZED INTRAMODE DECISION ON GPUS

Recent video encoding algorithms use RD-optimized intramode 
selections to determine the optimal intraprediction direction. In 
these methods, the encoder would compute the Lagrangian 
costs of all the candidate prediction modes and select the predic-
tion mode that minimizes the cost. The Lagrangian cost can be 
the weighted sum of the sum of square differences (SSD) 
between the original and reconstructed block and the encoding 
rate for header and quantized residue block. To calculate the 
cost for a candidate mode, it may involve computing the 
intraprediction residue, transformation, and quantization on the 
prediction residue, inverse quantization and inverse transforma-
tion, and entropy coding of the quantized transform  coefficients. 
Therefore, the computational com  plexity of RD-optimized intra-
mode selections could be very significant [43]–[45]. 

Achieving massive parallelization of RD-optimized intrade-
cision can be challenging. It is because, in intraprediction, 
the reconstructed pixels of the neighboring blocks are used 
to compute the reference samples. Therefore, the intrapredic-
tion modes of the neighboring blocks would need to be first 
determined, and these blocks would be encoded and recon-
structed accordingly. Then, different candidate modes of the 
current block can be evaluated based on the reconstructed 
pixels in the neighboring blocks. Such a dependency hinders 
the parallelization of the RD-optimized intradecision for 
GPU implementation. 

To address the dependency issue, previous work has proposed 
different strategies to modify the block processing order [26], 
[27], [46]. In particular, [27] analyzes the dependency constraint 
and proposes to process the blocks following a greedy strategy: 
in each iteration, the encoder would process all the blocks of 
which parent blocks have been encoded (in the dependency 
graph, Block A is the parent block of block B if block B requires 
the reconstructed pixels from block A under various candidate 
prediction modes). Also, in the greedy strategy, a video block will 

be scheduled for processing immediately after all its parent 
blocks have been processed. Figure 5 depicts the dependency 
constraint in H.264 4 3 4 intraprediction and the scheduling 
under the greedy strategy. [27] argues that the greedy strategy is 
optimal for H.264 and AVS encoding: under the specific con-
straints imposed by H.264/AVS, and among all encoding orders 
obeying the constraints, the greedy-based encoding order 
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[FIG5] (a) Notations for dependency graph: each block 
corresponds to a 4 3 4 block. (b) Dependency graph when 
processing an image frame in H.264 RD-optimized intramode 
selection. Each node represents a 4 3 4 block (see (a) for 
notations). A directed edge going from block A (parent node) to 
block B (child node) indicates that block B requires the 
reconstructed pixels from block A to determine the RD costs of 
various candidate prediction modes. The graph is processed 
following the greedy strategy proposed in [27], and the figure 
shows the iteration at which each block is processed.

[FIG4] Block encoding order proposed in [22] for H.264 4 3 4 
RD-optimized ME. Each square represents a 4 3 4 block. Blocks 
with the same number (e.g., 5a, 5b, 5c) are to be processed 
in parallel.
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requires the minimum number 
of iterations to process all the 
blocks. Simulation results sug-
gest that, using the greedy strat-
egy, GPU-based intramode 
decision can achieve about up 
to two times speedup in a sys-
tem with an INTEL Pentium 4 
3.2 GHz CPU and a NVIDIA GeForce 8800 GTS graphics proces-
sor (Table 2). According to [27], the average parallelism is about 
127 for 1080p videos, and a two times speedup seems to agree 
with our results given in the section “Case Study: GPU-Based 
Fast Motion Estimation.”

MOTION COMPENSATION ON GPUS

GPU-based MC has been proposed by [10] and [29] for 
Windows media video (WMV) and H.264 video decoding, 
respectively. MC requires a lot of computations, since video 
coding standards allow MVs to point to subpixel locations (e.g., 
half-pel or quarter-pel) and intensive pixel interpolation would 
be necessary to generate the prediction samples for motion 
displacements with fractional values. For example, in H.264, a 
half-pel sample is generated from six other samples using a 
six-tap interpolation filter. And to generate a quarter-pel sam-
ple it may require an additional linear interpolation. 

The work in [10] discusses techniques to address the over-
flow and rounding problem in interpolation that arose in MC. 
Note that MC can be parallelized since each block can be pro-
cessed independently using its motion vector information, and 
this is implemented by a pipeline of vertex/pixel shader proce-
dures in [10]. In their GPU implementation, they use a multi-
pass technique that handles the residuals and rounding control 
parameter in a separate pass to avoid overflow while preserv-
ing the precision. In addition, [10] discusses how different 
modules in video decoding can be partitioned between the 

CPU and the GPU, and how the 
CPU computation can be maxi-
mally overlapped with the GPU 
computation (this will be fur-
ther discussed). Simulation 
results suggest that, in a sys-
tem with an INTEL Pentium 
III 667 MHz GPU and a NVIDIA 

GeForce3 Ti200 GPU, by leveraging the GPU the system can 
achieve more than three times of speedup, and it is possible to 
achieve real-time WMV (version 8) decoding of HD video of 
resolution up to 1280 3 720 [10]. 

TASK PARTITION BETWEEN 
THE CPU AND THE GPU
To obtain competitive system performance, the CPU and the 
GPU need to be considered together for encoding/decoding. 
Investigating the optimal partition of computation tasks 
between the CPU and the GPU, however, could be very 
involved, and it requires serious evaluation on many issues. 
For example: 

It is necessary to investigate how to allocate the tasks  ■

such that the GPU computation can overlap with the CPU 
computation as much as possible, thereby achieving maxi-
mal parallel processing. 

Since the bandwidth between the GPU memory and  ■

main memory could be slow, it is important to investigate 
how to minimize the data transfer between main memory 
and the GPU memory. 

It is also important to study and evaluate which modules  ■

in the encoding/decoding flow can be efficiently offloaded 
to the GPU, while others would be executed on CPU.

Focusing on WMV decoding, [10] proposes a partition strategy 
where the whole feedback loop, including MC and color space 
conversion (CSC), is offloaded to the GPU. By doing so, they can 
avoid transferring the data back from the GPU to the CPU. Since 
read-backs from the GPU memory to main memory could be 
slow due to common asymmetric implementation of the memo-
ry bus [10], such read-backs should be minimized. Figure 6 
depicts the partition strategy. Note that while the GPU is per-
forming MC and CSC of frame n, CPU would be performing 
variable-length decoding (VLD), inverse quantization (IQ), and 
inverse DCT (IDCT) of the frame n 1 1. Note also that interme-
diate memory buffer is used between the CPU and the GPU to 
absorb the jitters in CPU/GPU processing time. Simulation 
results in [10] suggest intermediate buffer size of four frames 
can considerably improve the overall decoding speed. 

While [11] has discussed some issues (e.g., bandwidth 
requirement) on offloading ME to the GPU, there seems to be 
no prior work on rigorous investigation on how video encod-
ing may be partitioned between the CPU and the GPU. We 
remark that the GPU implementation of several important 
encoding modules (including ME, intramode decision, MC, 
and transform) have been investigated in the past, while that 
of deblocking filter and entropy coding need further research. 

[TABLE 2] COMPARISON BETWEEN THE PARALLEL H.264 
INTRAPREDICTION ON GPU PROPOSED IN [27] AND 
CONVENTIONAL H.264 INTRAPREDICTION ON THE CPU. THE 
NUMBERS ARE THE RATIOS OF THE CPU RUNNING TIME TO 
THE GPU RUNNING TIME. NOTE THAT THE GPU RUNNING 
TIME INCLUDES ALL THE DATA TRANSFER OVERHEAD.

QP = 28 QP = 36 QP = 44 
CIF:
FLOWER_CIF 1.14 1.12 1.14 
PARIS_CIF 1.12 1.14 1.12 
MOBILE_CIF 1.14 1.12 1.12 
AVERAGE (CIF) 1.13 1.13 1.13 

1,280 3 720: 
CREW 1.38 1.40 1.37 
NIGHT 1.49 1.42 1.39 
CITY 1.48 1.47 1.43 
AVERAGE (1,280 3 720) 1.45 1.43 1.39 

1,920 3 1,080:
BLUE_SKY 1.90 1.82 1.73 
RIVERBED 1.93 1.82 1.76 
STATION 1.89 1.81 1.80 
AVERAGE (1,920 3 1,080) 1.91 1.82 1.76 

TO FULLY HARNESS THE 
COMPUTATIONAL POWER IN THE 

GPU, ONE WOULD NEED TO DESIGN 
THE ALGORITHM TO UTILIZE THE 

MASSIVE NUMBER OF PROCESSING 
CORES IN PARALLEL.
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CASE STUDY: GPU-BASED 
FAST MOTION ESTIMATION
To illustrate some design considerations 
in using GPUs for video coding, we dis-
cuss in detail in this section a GPU-based 
fast ME (the GPU ME code was devel-
oped by the authors based on the H.264 
JM 14.2 reference software). The focuses 
are on how to address the data depen-
dency in the algorithm to harness the 
parallel processing capability of GPUs, 
and on how to tradeoff the speedup with 
RD performance. 

FAST MOTION ESTIMATION
Our GPU implementation of fast ME is based on simplified 
unsymmetrical multihexagon search (smpUMHexagonS) [42], 
which is one of the fast ME algorithms adopted by the H.264 JM 
reference software. We select smpUMHexagonS because it can 
achieve very good tradeoff between computational complexity 
and coding efficiency. For example, on a Pentium 4 CPU it was 
reported smpUMHexagonS can achieve up to 94% reduction in 
ME execution time with comparable RD efficiency, when com-
pared with the fast full search in the JM software [42]. In addi-
tion, smpUMHexagonS is quite compact, so it could meet the 
memory constraint of the GPU. In our implementation, all the 
GPU kernels that deal with integer-pel estimation have about 
600 lines of code. 

Figure 7 depicts the flow chart of smpUMHexagonS. For 
each MB, smpUMHexagonS computes the MVs for all the MB 
partitions (16 3 16, 16 3 8, . . . 4 3 4). MVs are selected by 
minimizing the Lagrangian cost D 1 lR, where D is the SAD 
between the current block and the candidate, and R is the bit- 
rate to encode the MV. In smpUMHexagonS, computation 
reduction is achieved mainly by sampling the search space judi-
ciously, using several techniques including motion vector pre-
diction, different search patterns (cross, hexagon, and diamond) 
and early termination. In particular, MVs from spatially adjacent 
blocks and from other MB partitions are used to initialize the 
search for the current partition. Notice that as depicted in Figure 
7, smpUMHexagonS uses several tests to determine if the search 
(of the current partition) can be terminated based on the mini-
mum cost computed so far. As a result, different MBs with differ-
ent contents may undergo different processing paths (which is 
typical in many fast ME algorithms [47]), and this may affect the 
performance of the GPU implementation. 

THE GPU IMPLEMENTATION USING TILING
To utilize the parallelism in the GPU, we partition the current 
frame into multiple tiles, and each tile contains K  (height) 3 L 
(width) MBs. For example, Figure 8 depicts the case with K 5 1, 
L 5 4. Each tile is processed by a single GPU thread, i.e., each 
thread processes K 3 L MBs in a tile sequentially, and different 
tiles are processed by different independent threads concurrent-
ly on the GPU. 

Following from the discussion in the section “Fast Motion 
Estimation,” individual MBs are not independent under 
smpUMHexagonS. In particular, MBs depend on their neigh-
bors in the following ways: 

First, to compute the rate term  ■ R in the Lagrangian cost 
the MVs of the neighboring MBs are required. If a neighbor-
ing MB belongs to another tile, we assume its motion vector 
is equal to zero in computing R. Therefore, with tiling, the 

Cross/Hexagon Search

Satisfy Intensive
Search Condition?
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No

Satisfy
Converge Condition?
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No

Small Local Search

Start: Check Motion Vector Predictors

Up Layer Predictor Search

Small Local Search

Yes

No

Extended Hexagon/Diamond Search

Convergence Search

Satisfy
Converge Condition?

Stop

[FIG7] Fast ME using smpUMHexagonS [42]. The figure depicts 
the steps for integer-pel search for an MB partition.

[FIG6] Task partitioning in WMV decoding proposed by [10].
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computed Lagrangian cost may not be very accurate and sub-
optimal MVs may be chosen by smpUMHexagonS as a result. 
The impact of tiling in this case depends on the value of l 
and hence the target bit rate. For low bit-rate applications 
(rate constrained), encoders would focus more on rate effi-
ciency, and large l would be chosen and the rate term would 
dominate the Lagrangian cost [48]. Tiling therefore shall 
have a more pronounced negative impact on the performance 
of smpUMHexagonS for low bit-rate applications (since tiling 
affects the rate term). 

Second, smpUMHexagonS (and many other fast ME  ■ [47]) 
uses motion vector prediction, i.e., MVs of the neighboring 
MBs are used to initialize the search. Under tiling, some infor-
mation about neighboring MVs is not available, and this may 
result in poor-quality initial search points, and suboptimal MVs 
may get selected at the end of the search (hence the RD perfor-
mance is compromised). Moreover, since smpUMHexagonS 
employs early termination, poor initial points may also result 
in longer processing time, as more search points would need 
to be examined until the cost is small enough to terminate the 
search (e.g., we observe about 4% increase in the ME process-
ing time when encoding the HD 720p sequence Harbor using 
tiling K 5 1, L 5 1 in the sequential smpUMHexagonS). 

The above discussions are also applicable to many other fast 
ME algorithms. Note that in our simulation, tiling is used only 
in ME to facilitate the GPU computation, and the rest of the 
encoding proceeds in the same manner as in the reference soft-
ware. Therefore, our tiling is different from other partitioning 
ideas such as slice [47], where individual partitions are treated 
independently in most of the encoding. 

EXPERIMENTS
To examine the performance of the GPU-based fast ME using 
tiling, we conduct experiments on PCs equipped with one 
GeForce 8800 GTS PCIe graphics card with 96 stream proces-
sors [15], and an Intel Core 2 Quad Q9400 2.66 GHz CPU with 
3.23 GB of RAM. We use NVIDIA’s Compute Unified Device 
Architecture (CUDA) [39] to implement the GPU code. We 
choose CUDA solely because of the availability of the NVIDIA 
device in our laboratory, and we remark that there are other 
well-designed GPU programming models such as ATI CTM [49], 
Stream Computing SDK, and Brook1 [50]. 

We first evaluate how tiling may affect the RD perfor-
mance. We use JM 14.2 to encode HD 720p sequences 
(1280 3 720, 60 frame per second) Crew, City, Harbor and 
Night (We focus on encoding HD videos because of its high 
computational requirement, and because of the growing inter-
est on HD contents.) We use H.264 high profile with search 
range of 64. All the pictures are encoded as P-frames except 
the initial I-frame. Figure 9 depicts the RD performance with 
different tile sizes for the Harbor sequence. As shown in the 
figure the impact of tiling is small in this case until tile size is 
down to K 5 1, L 5 1, when the degradation is about 0.2 dB 
compared to the original reference software (with 
smpUMHexagonS). Table 3 shows the average peak signal-to-
noise ratio (PSNR) degradation and the average increase in bit 
rate using different tile sizes, measured by Bjontegaard Delta 
PSNR (BDPSNR) and Bjontegaard Delta bit rate (BDBR), 
respectively. Note that BDPSNR and BDBR are used frequently 
in the video standardization community [51]. The results sug-

gest tiling may lead to average degrada-
tion between 0.08 dB to 0.4 dB for these 
sequences with tile size K 5 1, L 5 1. 

We then discuss how tiling may affect 
the speedup. Table 4 shows the GPU exe-
cution time (in integer-pel ME) with dif-
ferent tile sizes, and Figure 10 shows the 
speedup between the GPU implementa-
tion (with tiling and using parallel pro-
cessing on multicore) and the sequential 
CPU implementation (without tiling and 
using sequential processing on a single 
core). Comparison with parallel program 
code on multiple CPU cores will be dis-
cussed next. The GPU execution time 
includes the overhead to transfer the 
video frames from system memory to the 
GPU memory. Compiler optimization is 

[FIG9] RD performance of Harbor with different tile sizes in fast ME. Here “original” 
refers to the reference software (that is, without tiling).
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[FIG8] GPU-based fast ME: the current frame is divided into 
multiple tiles to facilitate parallel processing in ME. Here each 
square represents an MB. 
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applied to both the GPU program and the CPU program. 
However, both the GPU/CPU code have rooms for further speed 
improvement. In particular, the GPU code stores pixel data in 
global memory (off-chip memory), which has considerable 
access latency [39]. As ME is fairly memory access intensive 
(SAD calculation performs only three mathematical operations 
per two memory loads, giving an arithmetic intensity of 1.5, 
which is rather small for the GPU computation [37]), such 
latency may impact the GPU code performance. Therefore, the 
code can be improved by judicious use of shared memory (on-
chip memory) [37]. As shown in Figure 10 speedup increases 
with smaller tile size, as more independent threads can be 
scheduled. This is particularly important in the current GPU 
code to hide the memory access latency. Note also that different 
sequences have different GPU execution time and speedups, as 
different video contents may lead to different execution paths in 
smpUMHexagonS and different amount of penalty incurred by 
execution serialization. Figure 10 suggests speedups of 1.5–3.5 
can be achieved in integer-pel smpUMHexagonS in these 
sequences using tile size K 5 1, L 5 1. 

Figure 11 shows the speedup between the GPU implementa-
tion and a parallel CPU implementation using the four CPU cores 
on the Intel Core 2 Quad. To achieve parallel CPU processing, the 
current frame is partitioned into four tiles of equal number of 
MB rows (i.e., L 5 width of the video frame in MB, K  5 height 
of the video frame in MB/4), and each tile is processed by an in-
dependent thread running on a CPU core. We use OpenMP to 
implement the parallel CPU program [52]. We observe the paral-
lelization reduces the CPU running time by a factor of three ap-
proximately. Note that the theoretical maximum speedup of four 
cannot be achieved by this parallelization strategy, as sm-
pUMHexagonS may spend different execution time on each MB 
and optimal load balancing cannot be achieved by simple tiling. 
Figure 11 suggests the running time of the GPU  implementation 

and the parallel CPU implementation can be comparable in 
some cases (while the GPU  implementation incurs some RD 
performance degradation as depicted in Table 3). 

In the experiment, we observe the overhead to transfer a 
frame from the CPU to the GPU is about 1.6 ms, and this is 
about 0.1–0.2% of the running time of integer pel ME (see 
Table 4). In general, data transfer overhead could be a less seri-
ous issue in interframe encoding compared with decoding and 

[TABLE 3] TRADEOFF BETWEEN TILE SIZE AND RD PERFORMANCE. AVERAGE INCREASE IN BIT RATE AND AVERAGE PSNR 
DEGRADATION ARE COMPUTED WITH RESPECT TO THE REFERENCE SOFTWARE (I.E., WITHOUT TILING).

CREW CITY HARBOR NIGHT

TILE SIZE 
NUMBER OF 
TILES 

BDBR 
(%) 

BDPSNR 
(DB) 

BDBR 
(%) 

BDPSNR 
(DB) 

BDBR 
(%) 

BDPSNR 
(DB) 

BDBR 
(%) 

BDPSNR 
(DB) 

K 5 1,   L 5 1 3,600 3.135 20.082 12.933 20.407 5.578 20.221 4.636 20.17 
K 5 1,   L 5 4 900 3.081 20.079 11.115 20.352 2.385 20.094 3.546 20.13 
K 5 1,   L 5 16 225 3.116 20.08 11.171 20.35 2.246 20.089 3.415 20.125 
K 5 1,   L 5 40 90 3.224 20.083 10.821 20.339 2.205 20.087 3.4 20.124 
K 5 4,   L 5 80 12 0.63 20.016 1.412 20.044 0.57 20.022 1.19 20.043 
K 5 16, L 5 80 3 0.094 20.003 0.261 20.008 0.07 20.003 0.161 20.006 
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[FIG10] Tradeoff between tile width and speedup (tile height K is 
equal to one). Speedup is the ratio of the CPU running time 
(sequential program code on one CPU core) to the GPU running 
time (including data transfer overhead).

[FIG11] Tradeoff between tile width and speedup (tile height K 
is equal to one). Speedup is the ratio of the CPU running time 
(parallel program code on four CPU cores) to the GPU running 
time (including data transfer overhead).
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[TABLE 4] GPU EXECUTION TIME FOR FAST INTEGER-PEL 
MOTION ESTIMATION WITH DIFFERENT TILE WIDTH
(TILE HEIGHT K IS EQUAL TO ONE). DATA TRANSFER
OVERHEADS ARE INCLUDED.

TILE 
WIDTH 

NUMBER OF
THREADS 

GPU EXECUTION TIME (MS)
CREW CITY HARBOR NIGHT 

L = 1 3,600   835.05   927.32 1,248.95 1,688.50
L = 4 900   959.16 1,005.55 1,341.45 1,975.95
L = 16 225 2,169.25 2,108.71 2,763.79 4,175.44
L = 40 90 4,373.63 4,165.28 5,318.38 6,920.73
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intraframe encoding, since 
interframe encoding requires a 
significantly larger amount of 
execution time in general. 

Finally, we would like to 
remark that both the CPU and 
the  GPU implementations can 
be further optimized. Our dis-
cussion has suggested that it is nontrivial to achieve the peak 
performance offered by these multicore devices in video cod-
ing, and more algorithm research and instruction level optimi-
zation would be needed. 

CONCLUSIONS AND DISCUSSION
We have reviewed previous work on using GPUs for video encod-
ing and decoding. In particular, we have discussed how some 
video coding modules can be implemented in certain ways to 
expose as much data parallelism as possible, so that the massive 
parallel-processing capability of GPUs can be fully utilized. 
Simulation results in previous work suggest GPU-based imple-
mentations can achieve considerable speedups for some of the 
most computation-intensive modules in video coding. Therefore, 
it could be a cost-effective approach to leverage the computing 
power of GPUs to meet the data processing requirement in video 
coding. We have also discussed an example to partition the video 
decoding flow between CPUs and GPUs to achieve maximum 
overlapping of computation. In addition, we have discussed a 
GPU-based fast ME and examined the tradeoff between speedup 
and RD performance. 

There are several related research issues. First, there seem 
to be no studies on partitioning the encoding flow between 
CPUs and GPUs. Second, with the availability of many different 
video formats (e.g., SD and HD) and coding standards there is a 
growing need to transcode one encoded video format to anoth-
er [53]–[55]. However, while there are a few commercial 
transcoding applications available [56], [57], there seems to be 
no prior work on investigating the optimal usage of GPUs for 
transcoding. Note that unlike video encoding/ decoding, there is 
no standard algorithm for video transcoding, and there are 
many previously proposed approaches that achieve a wide range 
of transcoding quality with different complexity requirements 
[53]. This complicates the study of GPU-based transcoding. 
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Audio Sparse
Decompositions 
in Parallel 

[Laurent Daudet]

G
reedy methods are 
often the only practi-
cal way to solve very 
large sparse approxi-
m a t io n  pro b le m s . 

Among such methods, matching pur-
suit (MP) is undoubtedly one of the 
most widely used, due to its simplicity 
and relatively low overhead. Since MP 
works sequentially, however, it is not 
straightforward to formulate it as a parallel 
algorithm, to take advantage of multicore plat-
forms for real-time processing. In this article, we 
investigate how a slight modification of MP makes it 
possible to break down the decomposition into multiple local 
tasks, while avoiding blocking effects. Our simulations on 
audio signals indicate that this parallel local matching pur-
suit (PLoMP) gives results comparable to the original MP 
algorithm but could potentially run in a fraction of the 
time—on-the-fly sparse approximations of high-dimensional 
signals should soon become a reality. 

The last two decades have witnessed the advent of sparsity 
as a major paradigm in many areas of signal processing. Spar-
sity is the key to success for most of state-of-the-art multime-
dia compression schemes, such as still image coding (for in-
stance JPEG-2000 [1]) and audio coding (MPEG-2/4 advanced 
audio coding (AAC) [2]). Basically, sparsity exploits the fact 

that there exist bases in which, for most natural signals, only 
a few of the transform coefficients are sufficient to provide a 
good approximation. To be more precise, given a signal, by 
sorting its transform coefficients by absolute decaying order, 
one observes a fast decay, typically a power law with some large 
negative exponent. This ability to concentrate most of the en-
ergy of the signals into only a few of the transform coefficients 
naturally leads to an increased coding efficiency. For instance, 
in the JPEG-2000 image coder based on an orthogonal two-
dimensional (2-D) dyadic wavelet transform, only portions 
of the image that correspond to sharp transitions (at objects’ 
edges for instance) will lead to large wavelet coefficients: most 
of the bit budget is spent in these regions. Similarly, in the  Digital Object Identifier 10.1109/MSP.2009.935388
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modified discrete cosine trans-
form (MDCT) domain, i.e., 
the cosine-based filterbank of 
AAC, the large  coefficients rep-
resent the perceptually domi-
nant sinusoidal  harmonics of 
the musical content. With a smart quantization of these few 
large  transform coefficients, and an efficient indexing of their 
parameters, these coders achieve a high compression ratio at 
virtually no loss of perceptual quality (typically at 1:20 or more 
for JPEG-2000, and 1:6 for MPEG-2/4 AAC). 

But why does it work—where does this energy compaction 
come from? This is basically due to the fact that the transform 
basis elements “look like” elementary components of the ana-
lyzed signals: 2-D wavelets look like the edges of objects in 
images and discrete cosines look like the harmonics of musical 
notes. Only a few of these elementary building blocks are thus 
sufficient to well approximate the signals. It should be empha-
sized that the corresponding algorithms have a relatively low 
complexity: in the orthonormal bases described above (discrete 
wavelets/MDCT), selecting the set of significant coefficients 
involves a simple thresholding. 

However, with all these nice properties also comes a major 
flaw: orthogonal bases are usually too rigid to accommodate 
even basic invariance properties of our signals. For instance, 
standard wavelet image codecs do not have shift- nor rotation-
invariance: if the object pictured is slightly moved and/or tilted 
then its transform representation is fundamentally different. 
Similarly, in the audio domain, the MDCT is not shift-invariant: 
depending on the exact position of the signal with respect to the 
analysis frames, the transform coefficients may be radically dif-
ferent and so is the compression efficiency. Furthermore, the 
single frame length of the MDCT is inappropriate to simultane-
ously represent both the very sharp attack transients at the 
onset of percussive notes (where very short windows are desir-
able), and the long harmonics of tones (where a high frequency 
resolution is needed, hence long frame sizes). 

To achieve higher sparsity, the key is to use decomposition 
spaces that have more basis vectors than orthonormal bases, 
and thereby more flexibility. These extended bases are called 
overcomplete, or redundant bases. Would you like time-shift 
invariance in your audio transform? The discrete Gabor trans-
form, as known for one-dimensional (1-D) signals as short-time 
Fourier transform, is nearly shift-invariant at the cost of (at 
least) doubling the size of the basis. Would you like shift-in-
variance in your image coder? The dual-tree complex wavelet 
[3] offers you this (approximately), but it is now four times 
overcomplete. With such overcomplete bases, sparsity is 
improved: basically, the larger the basis (the more redundant) 
the more likely it is that, for every local feature of the signal, 
there will be one basis vector that nearly fits. Overcompleteness 
brings flexibility and generality in the class of signals that are 
sparsely represented. Recently, prototype codecs have been 
developed in many fields of multimedia, for example image [4], 
audio [5], [6], or video [7]. At very low bit rates (i.e., very high 

compression ratio), these new 
codecs outperform standard 
codecs based on orthogonal 
transforms. Besides coding, 
there are also many applica-
tions that benefit from this 

sparse energy compaction property [8], for instance informa-
tion extraction [9], [10], source localization [11], or source 
separation [12], [13]. 

So, why are these sparse overcomplete transforms not used 
in widespread, standardized codecs? This is primarily due to 
their computational cost. Most modern multimedia applications 
now require on-the-fly encoding, and here the processing time 
for audio in [5] is typically 100 times slower than real time, or 
the codec of [4] needs up to one hour for just one still image! As 
we shall see, as soon as the transform basis becomes overcom-
plete, selecting the coefficients is not as easy as the simple 
thresholding used in the orthogonal case: now the coefficients 
are no more mutually independent, and thus selecting one coef-
ficient affects all the others. The delicate art of sparse approxi-
mation is a constant struggle against combinatorial complexity, 
as described in the next section. 

The study presented in this article is a proof of concept that, 
in the framework of sparse overcomplete decompositions, real-
time processing of large streams of multimedia data can poten-
tially be achieved with very simple parallel algorithms based on 
the simple and effective MP algorithm. 

SPARSE OVERCOMPLETE DECOMPOSITIONS: 
A MASSIVE COMBINATORIAL PROBLEM
Let us introduce some notation: let x [ RN  be a length-N  real 
signal. We would like to find an optimal (sparsest) decomposi-
tion of x, as a linear combination of few elementary “atoms” gg

that belong to a large, overcomplete set, called dictionary 
D5 5gg, g [ G6. The term “atom” is a slight abuse of lan-
guage, as it literally implies that the decomposition is unique, 
which in general is not true with overcomplete dictionaries. 
However, this analogy with physics dates back from the 1947 
pioneering work of D. Gabor on the acoustical quanta [14] and 
is still prevailing today. In general, dictionaries are collections 
of elementary waveforms that are chosen to represent the local 
characteristics of the class of signals under study. In the sim-
plest case, dictionaries are concatenations of orthonormal bases 
(e.g., Fourier sinusoids 1 Dirac impulses, or local Fourier bases 
with different window sizes). Dictionaries can also be learned 
from a set of signals [15]. 

Here, we want to approximate x as a weighted sum of a 
known number K  of atoms, for instance corresponding to our 
bit budget 

x < a
K21

k50
agk

ggk
. (1)

This is illustrated on Figure 1, with a signal represented by a 
linear combination of six atoms from the dictionary: the prob-
lem consists of finding the optimal scale-time-frequency 

THE LAST TWO DECADES HAVE 
WITNESSED THE ADVENT OF SPARSITY 

AS A MAJOR PARADIGM IN MANY 
AREAS OF SIGNAL PROCESSING.
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 parameters for each atom in this set, and the corresponding 
weights a. Next, we can formulate our direct sparse approxima-
tion problem: With dictionary D5 5gg, g [ G6  and K  fixed, 
find the set of indices 5gk6k50. . . K21 and corresponding coeffi-
cients 5agk

6k50 . . . K21 that minimize ||x 2 aK21

k50
agk

ggk
||2. 

Unfortunately, this problem cannot be solved exactly for real-
size problems, because of its combinatorial nature. Indeed, if M  
is the total number of atoms in the dictionary D, there are aM

Kb  
combinations of indices 5gk6k50cK21 to test, and for each of 
these finding the least-squares optimal set of coefficients 
5agk

6k50cK21 is an orthogonal projection problem, requiring 
(in general) the inversion of a K 3 K  matrix. 

To circumvent this problem, there are two different options. 
The first one is to design a similar problem that can be solved 
exactly. The other approach looks for an approximate solution of 
the original problem, obtained with a tractable algorithm. In 
both cases, one is left to trust that the obtained solution is not 
far from the optimal one. 

As the rest of the article is devoted to the latter solution, let 
us quickly review the first option. Instead of having an exact 

sparsity constraint (number of nonzero elements bounded by 
some number K ), we can look for signals that have few large 
coefficients and a lot of very small ones. Among all measures for 
this “relaxed sparsity problem,” it is common practice to use the 
,1-norm ||x||1 5 gN21

k50
|x 1k 2 |. Now, as the ,1-norm has good 

convexity properties, it is possible to jointly optimize the data 
fidelity and the ,1-sparsity of the set of coefficients, by standard 
quadratic programming [16], interior point methods [16], or a 
modification of least angle regression (LARS) technique [17]. 
There are also similar problems that can be solved more effi-
ciently, such as the Dantzig selector [18] that only requires a 
linear-time program and is hence applicable to large data sets. It 
should be noted that these methods have received renewed 
attention lately in the framework of compressive sensing [19], 
[20], which involves similar types of optimization problems. In 
this context, there is currently a large activity to adapt these 
sparse solvers on multicore or GPUs [21]–[23]. 

However efficient these methods may be, we have chosen not 
to use them in this study. The main reason is that our long-term 
goal is to design a “real-time” (though with delay) sparse 
decomposition algorithm, applicable to an incoming stream of 
data. In general, the previously described algorithms deal with 
the signal as a whole, and are therefore more suited to an offline 
scenario. The simplest greedy methods described in the next 
section, however, can very easily be modified into a “local” 
implementation, amenable to on-the-fly processing. Another 
advantage of greedy methods is that they are natively scalable in 
complexity, hence usable on any hardware architecture, and vir-
tually any signal size. Finally, they provide an intuitive view of 
the involved mechanisms. Accordingly, the rest of this article 
will only consider greedy methods. 

GREEDY METHODS FOR SPARSE APPROXIMATIONS
Greedy methods [24] are based on a simple divide and 
 conquer principle: they select one atom, subtract its contri-
bution, and iterate on the residual. The efficiency of these 
methods arise from the fact that, to select only one atom 
(K 5 1), the direct sparse approximation problem is easily 
solved: the parameter gopt and the corresponding coefficient 
agopt

 that minimize ||x 2 aggg||2 are obtained by selecting the 
best orthogonal projection on individual atoms, i.e., by simple 
scalar products (correlation) between the signal and the 
atoms: gopt 5 argmax  g[G|8x, gg9|,  and agopt

5 8x, ggopt
9.  This is 

the basis for the MP algorithm [25], whose pseudocode is 
given in Algorithm 1. Basically, it can be described as follows: 
at each iteration, find in the dictionary D  the unit-norm 
atom best correlated with the signal (with the correlation 
computed as a scalar product, atom selection stage), subtract 
its contribution by (least-squares) orthogonal projection, and 
reiterate. There are more elaborate strategies such as orthog-
onal MP [26], low-complexity orthogonal MP [27], relaxed 
greedy algorithm [28], or gradient pursuit [29] that find a 
better minimizer of the error by considering the whole set of 
already selected atoms, from previous iterations. For the sake 
of simplicity, we do not consider them in this study. 

…
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[FIG1] Finding the best sparse decomposition of a signal, in a 
large dictionary of elementary waveforms, is a hard optimization 
problem that in general cannot be solved by brute force.

[ALGORITHM 1] MATCHING PURSUIT (MP).

Require:  signal x [ RN, dictionary D5 5gg, g [ G6, maximum number of 
iterations N0 

Ensure:  5ag, g [ G6  set of coefficients
 n d 0 index of iteration 
 r0 d x  residual at initialization 
 ag d 0, 4g [ G 
 repeat 
  cg 5 8rn, gg9, 4g [ G  scalar products computation (*) 
  gopt d  argmax g[G|cg|  atom selection stage (**) 
  rn11 d rn 2 cgopt

 ggopt
  residual update 

  agopt
d agopt

1 cgopt
 

  n d n 1 1 
 until n 5 N0 iterations performed or required precision reached 
  Return 5ag, g [ G6  set of decomposition coefficients, such that 

x 5 ag[G
 aggg 1 rn 
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Besides giving good approxi-
mate solutions of the sparse 
decomposition problem, MP is 
very appealing: first, its design is 
extremely simple, offering flexi-
bility to adapt to the problem at 
hand; and second, it is scalable 
in complexity: at any given time, every subsequent iteration adds 
a vector and reduces the approximation error. The algorithm can 
be stopped at any time, depending on the available resources and/
or the target precision. In a basic, most-general implementation, 
two steps can potentially be computational bottlenecks: the com-
putation of the scalar products and the atom selection stage 
(respectively marked with (*) and (**) in Algorithm 1). 

As described above, these greedy iterative methods are essen-
tially sequential. In the most general case, atoms have the same 
length as the signal itself, and any iteration is based on the resid-
ual of the previous one. Therefore, the potential gain in 
 parallelizing is weak, and limited to subtasks such as the update 
of the scalar products. In practice, atoms with arbitrary shape 
and support are barely used, as the cost of updating the scalar 
products is often prohibitive (updating the scalar product of the 
length-N  signal with P atoms requires in general N 3 P multi-
plications): one prefers fast algorithms such as the (local) FFT or 
the Mallat’s pyramidal algorithm for the discrete wavelet trans-
form. When such structured time-localized atoms are used, only 
a local update of the scalar products must be performed, consid-
erably speeding up the process. For 1-D signals, there are now a 
number of flexible, optimized packages for MP, such as the open-
source MP ToolKit (MPTK) [30]. However, for large signals, 
highly redundant dictionaries and/or high precision (i.e., large 
number of iterations), the decomposition time can still be large. 
As reported above, computation times are in the order of one 
hour for the processing of one image in [4] and of typically 100 
times the duration of the audio piece in [5]. 

The goal of this research is to show how such principles can 
be generalized to “parallelize” MP or more generally, any greedy 
pursuit algorithm. The main idea is to break down the problem 
into a number of threads that could be handled by different pro-
cessor cores working on different portions of the same signal. It 
should be emphasized that our approach is fundamentally dif-
ferent from the previously published work on parallel MP [31]–
[33], that present efficient multicore implementations of MP by 
optimally distributing the computationally intensive steps of MP 
(atom selection stage, update of the scalar products), hence 
minimizing the message passing between subtasks. Instead, in 
the current work, we present a “suboptimal” version of MP that 
allows a straightforward parallelization of the MP algorithm: dif-
ferent threads work on different portions of the signal. The first 
benefit is that there is no message passing between tasks, which 
may be a limiting factor when scaled to a very large number of 
tasks, and may lead to a performance strongly dependent on the 
architecture. Our approach is fully scalable, in the way that is 
adapts to the processing power at hand (basically, dividing the 
load by the number of cores with a negligible master process), 

and does not require any plat-
form-dependent implementa-
tion or parameter optimization. 
The second benefit is that there 
is no need to know, or load into 
memory, the entire signal. For 
a typical five-minute long song 

of CD-quality with more than 107 samples, there is no strong 
penalty in working locally on time frames whose size match the 
largest coherent “objects” in our signals (e.g., musical notes), 
with a typical duration of 0.1 s. This opens a perspective on 
“real-time” processing of an incoming stream of audio data—
though with a delay that can become significant. The penalty to 
pay is that we are no longer guaranteed to make optimal choices 
at every iteration as in the plain MP. We shall see that, for typical 
signals, a smart algorithm design can not only reduce this “pen-
alty,” but even take advantage of it, at high number of iterations. 
Throughout this article, all the examples will be audio signals, 
as 1-D signals are the easiest way to present such algorithms, 
however, similar principles could potentially apply to other sig-
nals with similar scaling structures. 

FIXED VERSUS SLIDING LOCAL MP
As a first approach, we divide the computational burden of MP 
by working locally on fixed adjacent segments (“frames”) of 
the signal (see Figure 2). The simplest strategy is to use block-
based frames: the signal is simply divided into equal-length 
frames [Figure 2(a)] and a local MP is applied on each of them. 
Although this strategy may be acceptable for some signals, for 
the audio signals studied here it provides sharp blocking 
effects: transients at edges, varying quality across edges. 

An alternate strategy is to use overlapping frames with 
smooth windows [Figure 2(b)]. It is important to mention that 
the window is not applied on the signal but is a  reweighting of 
the scalar products at the atom selection stage (step (**) in 
Algorithm 1), reducing the likeliness of choosing atoms at the 
side of the frames. This weighted matching pursuit (WMP) is 
described in Algorithm 2. 

The weights wg are chosen according to the center times 
of the atoms: large weights for atoms centered around the 
middle of the frame, small weights on the side. More precise-
ly, if tg is the centre time of the atom gg, then wg 5 w 1tg/L 2 , 

Frame 1 Frame 2 Frame 3 Frame 4 ...

...Frame 1

Frame 2

Frame 3

Frame 4

(a)

(b)

[FIG2] Parallel processing with (a) fixed frame-based 
segmentationß or (b) fixed smooth overlapping windows.

TO ACHIEVE HIGHER SPARSITY, THE 
KEY IS TO USE DECOMPOSITION SPACES 
THAT HAVE MORE BASIS VECTORS THAN 
ORTHONORMAL BASES, AND THEREBY 

MORE FLEXIBILITY.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE   [94]   MARCH 2010

where L is the frame size and 
w  any smooth tapering win-
dow defined on 30, 1 4  such 
t h a t  w 10 2 5 w 11 2 5 0,  f o r 
instance a Hanning window 
(preliminary experiments indi-
cate that the regularity of w is 
important but its exact design has little influence on the final 
performance). With this modification, the boundary effects 
are significantly reduced, but, as seen in Figure 2(b), adja-
cent overlapping windows share a portion of the signal. If an 
atom is selected in this zone, then a message has to be 
passed to its neighbor, indicating that the signal there has 
been updated locally. Due to the tapering window, these 
events should be  relatively rare, but their existence impose 
stringent parallel  programming constraints with message 
passing and synchronization. 

The simplest and more efficient strategy that we propose 
is to use instead sliding frames, such as the one displayed in 
Figure 3: a given core acts on a (windowed) frame of the sig-
nal, that after a number of iterations moves forward. An 
alternate view of this problem is shown on Figure 4, where 
multiple cores act on adjacent frames: after a number N0 of 
iterations, the signal is shifted by h samples, with h a frac-
tion of the frame size L. It is important to note that now, 
there is no overlap between adjacent frames, and therefore no 
need for message passing. This way, it is possible to use mul-

tiple core processors perform-
ing with the highest precision 
while guaranteeing real-time 
processing of the data, though 
with significant delay. If fs is 
the signal sampling frequency, 
and Niter/core  the guaranteed 

number of MP iterations/core/s (after initialization, the com -
putational cost per iteration remains roughly constant), N0 is 
simply given by N0 5 1Niter/core h 2 / 1Lf fs 2 . 

The pseudocode for this PLoMP algorithm is given in 
Algorithm 3. Apart from file input/output, PLoMP perfectly spreads 
the computational load onto the available computational resource, 
by making at each iteration K  independent calls to the WMP. 

RESULTS
We have simulated these approaches for representing audio sig-
nals on a redundant dictionary of local cosines. We first used a 
test signal of a sum of three constant-amplitude sinusoids with 
well-separated frequencies, a signal considered as very sparse, 
with added white noise. The energy of the residual is plotted on 
Figure 5, as a function of the total number of iterations.  The 
following four different PLoMP configurations were tested and 
compared to the standard MP algorithm: 

one-pass PLoMP (one core, working locally on the signal) 1) 
a two-pass PLoMP (2) K 5 2 cores working locally on 

the signal) 

[ALGORITHM 2] WEIGHTED MATCHING PURSUIT.

Require:  signal x [ RN, dictionary D5 5gg, g [ G6, maximum number of 
iterations N0 set of weights 5wg, g [ G6.

Ensure:  5ag, g [ G6  set of coefficients
 n d 0 index of iteration 
 r0 d x  residual at initialization 
 ag d 0, 4g [ G 
 repeat 
  cg 5 8rn, gg9, 4g [ G  scalar products computation 
  gopt d  argmax g[G|wg cg|  weighted atom selection stage
  rn11 d rn 2 cgopt

 ggopt
  residual update 

  agopt
d agopt

1 cgopt
 

  n d n 1 1 
 until n 5 N0 iterations performed or required precision reached 
  Return 5ag, g [ G6  set of decomposition coefficients, such that 

x 5 ag[G
 aggg 1 rn

[ALGORITHM 3] PARALLEL LOCAL MATCHING PURSUIT.

Require: incoming signal x, frame length L, size-L local dictionary 
D5 5gg, g [ G6, set of weights 5wg, g [ G6, frame hop size h, 
number of cores K, number of iterations per core N0. 

Ensure: 5ag, g [ G6  set of coefficients
 xlocal d  first K * L coefficients of x 
 repeat 
  equally divide xlocal into K  nonoverlapping frames 
  parallel process each frame with WMP, N0 iterations 
  store results in 5ag, g [ G6  
  load next h samples of x and shift xlocal 
 until no more incoming signal 
  Return 5ag, g [ G6  set of decomposition coefficients, such that 

x 5 ag[G
 aggg 1 rn

Sliding Frame 1

[FIG3] One sliding frame with a smooth tapering window.

Sliding Frame 3
Sliding Frame 2

Sliding Frame 1

Real-Time
Feed-In

(Delayed)
Real-Time
Feed-Out

1

–1

0.5

–0.5
0

[FIG4] Parallel processing PLoMP with adjacent smooth 
windows. The incoming signal is fed through the successive local 
processors, each one making just as many operations as to 
guarantee real-time-processing.

GREEDY METHODS ARE BASED ON 
A SIMPLE DIVIDE AND  CONQUER 

PRINCIPLE: THEY SELECT ONE ATOM, 
SUBTRACT ITS CONTRIBUTION, AND 

ITERATE ON THE RESIDUAL.
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two one-pass PLoMP, while the second time the signal is 3) 
entered in a time-reversed fashion, attempting to reduce the 
effect of time asymmetry in PLoMP 

a four-pass PLoMP (4) K 5 4 cores).
Interestingly, for a small number of iterations per core, 

all parallel or sequential strategies are equivalent, corre-
sponding to “good” choices: selected atoms remove energy 
only from the sinusoids. For a range of subsequent itera-
tions, parallel strategies sometimes make “mistakes,” choos-
ing atoms in the noise or side lobes. However, at high 
precision, all the sinusoidal components have been removed 
and the performance of all strategies are similar. Note that in 
this regime, the parallel local MP strategies even obtain a 
slightly better asymptotic behavior than global MP (see inset 
of Figure 5)! It should also be noted that the third strategy, 
using two passes in alternate directions, results in slightly 
better results in the intermediate regime than the K 5 2 
PLoMP (second strategy) (it can be guessed that some of the 
“bad choices” are a consequence of the time asymmetry of 
the local MP algorithm), but does not lead to any gain in the 
high- precision, asymptotic regime. 

We then performed similar simulations on a real audio 
excerpt chosen for its large dynamics (jazz trio with loud 
piano notes/quiet double-bass 1 drums), and compared the 
standard MP to a K 5 5 cores PLoMP, for a total number of 
iterations where the sound quality was deemed acceptable. For 
the same number of total iterations, the global signal-to-noise 
ratio (SNR) of the standard, sequential MP was 15.5 dB; while 
PLoMP resulted in 13.3 dB SNR. 

However, looking at the global SNR may not be the only cri-
teria to consider. Figure 6 shows the local SNR (computed on 
sliding windows of length 16,384 samples, i.e., about 370 ms at 
44.1 sampling rate), for the same total number of iterations, 
between the global MP and PLoMP. Although the average SNR is 
higher in the case of the global MP, the situation can be the 
opposite locally: PLoMP has a steadier local SNR. This can be 
beneficial from a perceptual point of view, and this is confirmed 
by listening to the soundfiles: in PLoMP, the bass has signifi-
cantly more presence, while it has almost disappeared in the 
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[FIG5] Decay of the energy of the residual as a function of the number of iterations, for a signal being a sum of three constant 
sinusoids and the dictionary a union of local cosines with different scales. The plain black line is the reference global MP, other colors 
are local PLoMP with different strategies (different number of windows/number of iterations at a given position).
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[FIG6] Parallel versus sequential processing on a real audio 
signal. Local SNR for sequential MP (red) and PLoMP (blue), for 
the same number of iterations.
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global, sequential MP. Corresponding sound files can be down-
loaded at http://old.lam.jussieu.fr/src/Membres/Daudet/SPM/.

CONCLUSION
The widely used MP algorithm is intrinsically a sequential algo-
rithm. We have shown that it can be modified to work locally, 
for carefully chosen frame duration and window shape, and is 
therefore particularly well suited to multicore processing. 
Simulations show that this comes at a usually small  penalty in 
performance, if any. For signals with large dynamics, it may 
even provide a better adaption to the specificities of the signal. 
Although still at a preliminary stage, this study paves the way 
to what is so far considered as intrinsically impossible: an 
“online” sparse solver for live multimedia continuous data 
streams. For high-quality audio, this would typically require 
tens of cores!
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s multicore architectures 
overtake single-core 
architectures in today’s 
and future compute sys-

tems, traditional appli-
cations with sequential algorithms can 
no longer rely on technology scaling to 
improve performance. Instead, applications 
must switch to parallel algorithms to take 
advantage of multicore system  performance. 
Image processing applications exhibit a high degree 
of parallelism and are excellent candidates for multicore 
systems. However, simply exploiting parallelism is not enough 
to achieve the best performance. Optimization must take into 
account underlying architecture characteristics such as wide 
vector and limited bandwidth. This article illustrates techniques 
that can be used to optimize performance for multicore x86 sys-
tems on three key image processing kernels: fast Fourier trans-
form, convolution, and histogram.

INTRODUCTION
Two major factors that affect application performance are the 
performance of the system that the application runs on and the 
underlying algorithms used in the application. For many years, 
applications could simply rely on system performance improve-

ments from advances in semiconductor manufacturing and 
 single-thread architecture. Recently, the power and the thermal 
wall began to limit further improvement. Industry switched to 
the more energy efficient design of multicore architectures. 
Today, nearly all major microprocessor vendors offer multicore 
processors. Instead of scaling performance with increased fre-
quency, multicore processors offer higher performance via 
more processing cores. Multicore processors differ from tradi-
tional processors in many ways, such as higher core counts, 
simpler core architecture, and more elaborate on-chip intercon-
nect. The increase in core count and compute density is the 
most notable difference between multicore architectures and 
traditional single-thread architectures. A critical implication of 

Image Processing 
on Multicore x86 
Architectures

[Daehyun Kim, Victor W. Lee, and Yen-Kuang Chen]

[Optimization techniques
  and examples]
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this change to applications is 
that they must be parallel-
ized to take advantage of 
multicore architectures.

To fully utilize the com-
putational capability of mul-
ticore platforms, it is very important to exploit the parallelism 
in applications. There is significant work on application paral-
lelization. Lin [16] summarizes some general principles under-
lying parallel computation and clarifies why they represent 
opportunities or barriers to successful parallel programming. 
Breshears [6] gives eight simple rules on how to create scalable 
multithreaded applications. For example, one rule is choosing 
an alternative algorithm for a better chance of concurrency. 
The goal is to remind us that the best sequential algorithm may 
not be the best algorithm on multicore processors. While the 
best serial algorithm may have the theoretically lowest com-
plexity, it may not be amenable to be parallelized. A  suboptimal 
serial algorithm that is easier to parallelize may offer better 
performance for multicore architectures. While Breshears’s 
rules demonstrate a high-level picture of parallel programming, 
we show practical programming details to help guide people to 
efficiently parallelize signal processing applications on multi-
core systems.

Furthermore, simply exploiting parallelism is not enough to 
provide high performance. Architecture-specific algorithm opti-
mization may be required. Ryoo [21] presents the optimization 
principles on a GPU with Compute Unified Device Architecture 
(CUDA). The key idea is to use massive multithreading to utilize 
the large number of cores and hide global memory latency 
through striking a balance between each thread’s resource usage 
and the number of simultaneously active threads. Some of their 
suggestions are also useful for general-purpose multicore pro-
cessors, e.g., optimizing use of on-chip memory to reduce band-
width usage and redundant execution. However, most of their 
suggestions are constrained to the target GPU platform. For 
instance, GPU can leverage its zero-overhead thread scheduling 
to hide memory latency, but not all processors have built-in 
hardware thread scheduling. Thus, the optimization principles 
on one multicore architecture cannot be directly applied to other 
multicore architectures.

Auto-tuning frameworks are proposed to allow applications 
to adapt to platform changes. There are many pieces of work 
about automatic tuning of fast Fourier transform (FFT) on 

multicore platforms [2], [11], 
[12], [20]. Automatic tools are 
particularly good at exploring the 
design space when we do not have 
enough knowledge of the plat-
forms. Auto tuners fail when 

drastic platform changes occur, such as the recent switch from 
the single monolithic complex core design to the many simpler 
cores design. To achieve the best performance on a new multi-
core architecture, it is still critical to hand optimize the code. 
Similarly, for an automatic tool to consider all new architec-
ture features, the work is similar to hand optimizing the code.

This article discusses the necessity of architecture-aware 
optimizations. A set of optimization techniques is presented to 
help guide programmers to work with Intel’s multicore x86 
systems. Three detailed examples of optimizing FFT, convolu-
tion, and histogram are used to illustrate the principles behind 
the techniques.

FFT, convolution, and histogram are three important kernels 
that form the building blocks of many image processing applica-
tions. Optimizing these kernels will provide performance benefit 
to all applications that utilize them. A number of open-source 
or commercial packages exist to provide preoptimized versions 
of these kernels for specific platforms [11][12][14]. However, as 
the platforms evolve, existing optimizations may not apply any 
more and new optimization packages are required.

The contributions of this article include:
providing a set of optimization techniques to guide pro-1)

grammers in architecture-aware optimization
providing detailed examples illustrating the use of the 2)

techniques on a multicore x86 architecture.

OPTIMIZATION TECHNIQUES 
Multicore processors provide performance through parallel 
computation instead of running single-thread fast. As more pro-
cessors are being integrated on to the same die, there are a few 
architecture implications. First, the memory bandwidth per 
core is reduced and that potentially makes some workloads 
bandwidth bound. Second, due to power limitation, the more 
processors are integrated, the less power each processor can 
consume. One consequence is that future multicore processor 
may employ a much simpler core, or more energy efficiency 
architecture features, such as, wider SIMD [24].

We introduce a set of techniques to optimize the three 
image processing kernels on multicore x86 systems, which is 
summarized in Table 1. Important optimization topics are iden-
tified so that programmers can use it as guidance for their opti-
mization work.

The first step is to identify whether a program is compute-
bound or memory-bound. This helps set the optimization goal. 
By understanding the program’s compute and memory 
requirements and matching it to the capability of a given mul-
ticore system, we can project the potential performance. The 
second step is to optimize single-core efficiency. Since a core’s 
computation capability largely stems from its wide vector 

[TABLE 1] OPTIMIZATION TECHNIQUES.

STEP DESCRIPTION
1) WORKLOAD CHARACTERISTICS — IDENTIFYING COMPUTE OR 

MEMORY BOUND

2) SINGLE-CORE OPTIMIZATION — VECTORIZING

3) MULTICORE OPTIMIZATION — DATA PARTITIONING
— LOAD BALANCING

4) MEMORY OPTIMIZATION — CACHE BLOCKING
— DOUBLE BUFFERING
— DATA PREFETCHING 

A SET OF OPTIMIZATION TECHNIQUES 
IS PRESENTED TO HELP GUIDE 

PROGRAMMERS TO WORK WITH INTEL’S 
MULTICORE x86 SYSTEMS.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE   [99]   MARCH 2010

units, vectorization is the key for good single-core perfor-
mance. The third step is to achieve high multicore scalability. 
Good parallelization should include intelligent data partition-
ing that minimizes intercore communication as well as bal-
anced load distribution among cores. The fourth and last step 
is memory optimization. Memory optimization should focus 
more on saving bandwidth than hiding latency. One of the big-
gest architectural changes in multicore chips from traditional 
parallel architectures is in the memory hierarchy; multicore 
chips provide fast communication among on-die cores, but all 
the cores share the same off-chip bandwidth. We observe that 
the off-chip bandwidth is the most precious resource in multi-
core systems. We use various techniques like cache blocking, 
double buffering, and data prefetching to use the memory 
bandwidth efficiently.

FAST FOURIER TRANSFORM
FFT is an algorithm to implement discrete Fourier transform. It 
improves performance from O(N2) to O(NlogN). FFTs have been 
studied exhaustively. Good algorithmic overviews are provided 
in [9], [15], and [17] and some representative implementations 
are published in forms of general libraries [12], [14], [19] or 
architecture specializations [7], [13], [18], [23]. The Cooley-
Tukey algorithm [8] provides a theoretical basis, and it is the 
most common among various FFT algorithms. Our FFT optimi-
zation starts with a baseline Cooley-Tukey algorithm. The same 
optimization techniques can also be applied to other complicat-
ed implementations. The main scope of this article is perfor-
mance optimization rather than algorithmic discussion.

The Cooley-Tukey FFT algorithm consists of logN stages of 
butterfly operation followed by a bit-re-
verse permutation. Arithmetic com-
putations are simple floating-point 
multiply-add, but data access patterns 
are nontrivial, which leads to optimiza-
tion issues. Figure 1 illustrates our opti-
mization strategy. It implements a 
16-point radix-2 algorithm on a two-
core system with a two-wide vector. We 
use this simplified example for brevity. 
Later we will address key optimization 
concepts such as higher radix algo-
rithm, larger data size, wider vector, and 
more cores.

SINGLE-CORE OPTIMIZATION: 
VECTOR DECIMATION
A simple vectorization scheme is to group 
consecutive data elements to one vector. 
However, it becomes problematic when 
the butterfly stride becomes smaller than 
the vector width (two in our example). 
When the butterfly stride is greater than 
the vector width, computation is per-
formed with full vector width and the 

 vector efficiency is 100%. As the butterfly stride becomes short-
er than the vector width, vector efficiency decreases and ulti-
mately only one element can be processed.

Various vectorized FFT algorithms such as [3] and [10] have 
been studied. The main idea is summarized here for reference. 
The solution is to perform a matrix transpose before the butter-
fly stride becomes shorter than the vector width. The transpose 
reorders the memory layout so that the butterfly stride can 
always be greater than the vector width.

For the 16-point radix-2 example, the initial butterfly stride 
is eight elements, so we can fully utilize the vector width of 
two. However, after two stages of the butterfly operations, the 
stride distance is one and we cannot perform vector operation. 
Using the vectorized FFT algorithm (as shown in Figure 1), if 
a 4 3 4 matrix transpose is performed after the second stage, 
the full vector execution can be performed throughout 
the stages.

MULTICORE OPTIMIZATION: 
INTERCORE COMMUNICATION
The right parallelization strategy depends on application scenar-
ios. We classify the usage model based on two workload charac-
teristics: the size of data and the number of FFTs to be 
performed. First, if the data size is too small, parallelizing it to 
multiple cores will be fruitless because the communication 
overhead will outweigh the parallelization benefit. Therefore, 
multicore parallelization is only considered for the big size 
FFTs. Second, if the target application performs many indepen-
dent FFTs, parallelization can be performed at the individual 
FFT level. Since no communication is required among the 

[FIG1] FFT optimization example: a 16-point radix-2 algorithm on a two-core system 
with a two-wide vector (elements are color-coded: different colors are assigned to 
different cores, and two consecutive elements are grouped into one vector).
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 individual FFTs, each can be assigned to different cores and exe-
cuted independently.

Parallelization of large size FFT has been studied well in 
such as the six-step algorithm [4]. The idea is to partition data 
intelligently to minimize data communication. One naïve 
scheme is to partition data contiguously. To parallelize a size-N 
FFT on C cores, the first N/C elements are assigned to Core 1, 
the next N/C to Core 2, and so on. However, this scheme 
requires a lot of intercore communication because data ele-
ments participating to the same butterfly computation are dis-
tributed across cores. A more intelligent scheme will take 
advantage of the butterfly access pattern. The first butterfly 
stride is N/2, so the first and N/2th elements are allocated to the 
same core. Because the second butterfly stride is N/4, the N/4th 
element is also allocated at the same core, and so on. We con-
tinue until all the data are assigned to cores evenly.

Figure 1 shows an example of the proposed scheme. For two 
cores, yellow boxed elements are assigned to Core 1 and green 
boxed elements are assigned to Core 2. We observe no intercore 
communication during the first two butterfly stages and also 
the last two. Intercore communication only occurs between the 
second and the third stages during the matrix transpose, which 
is unavoidable to parallelize the codes on two cores.

MEMORY MANAGEMENT: BANDWIDTH EFFICIENCY
Due to the stride access pattern, FFT implementations are memo-
ry-bound in many cases. This makes the large compute capability 
provided by the multicore systems useless unless an efficient mem-
ory management scheme is used. We achieve high off-chip band-
width efficiency by combining multiple memory operations into 
one. The memory operations involved in FFT are the matrix trans-
pose for vectorization, the intercore communication due to parallel 
processing, and the bit-reverse permutation. If we perform each 
memory operation separately, it requires multiple memory access-
es. Worse yet, if the data size does not fit to the cache, it results in 
multiple trips to main memory and this is a poor way of utilizing 

limited off-chip memory bandwidth. In the worst case, a naïve 
implementation requires an entire data sweep per butterfly stage.

Our optimization combines multiple memory operations 
into one to increase off-chip bandwidth efficiency. In Figure 1, 
at the first butterfly stage, data blocks (yellow elements for 
Core 1 and green elements for Core 2) are loaded from the 
memory to the scratchpad (caches/buffers/registers). Then, the 
first two stages are executed without intercore communication 
or memory accesses. After finishing the two stages, each core 
writes the results to the main memory. At the same time, it 
also performs the bit-reverse shuffling and matrix transposing 
together. The remaining two stages are executed in the same 
manner. Note that bit-reverse shuffle, matrix transpose, and 
intercore communication are combined into one memory 
stage, which saves off-chip memory bandwidth significantly. 
Otherwise, we should sweep the entire data through the main 
memory whenever we perform such operations.

Another important memory optimization is multiple buffer-
ing. It allows overlapping computation and memory transfer. 
While arithmetic units perform computations on one buffer, 
memory units prepare data for another buffer. Both units work 
concurrently instead of one unit waiting for the other.

Figure 2 shows an example of double buffering. It performs 
an FFT on 128 MB data, which can be a big three-dimensional 
(3-D) FFT or hundreds of small one-dimensional (1-D) FFTs. 
Using the vectorization and parallelization techniques dis-
cussed earlier, we can divide the whole FFT into multiple 
blocks. The block size should be chosen based on the cache 
size. For a cache size of 256 KB, we choose the block size of 64 
KB for a double buffering implementation. Two buffers will 
occupy 128 KB and the remaining space will be used by con-
stant values like twiddle factors. Note that 32 KB L1 cache is 
too small to maintain the double buffering. While the vector 
units are executing a FFT on one buffer, the data for the next 
FFT block are fetched to the second buffer. Once the opera-
tions are done, the two buffers are switched. To achieve a good 

computation and memory efficiency, the 
block computation time and the block 
communication time should be matched, 
which is another factor to decide the 
block size.

HIGHER RADIX ALGORITHM
For brevity, we discussed a radix-2 algo-
rithm so far. But in practice, higher radix 
algorithms usually provide better perfor-
mance. Table 2 illustrates computation 
requirements to perform a 4,096-point 
complex FFT with a radix-2, -4, and -8 
implementations. Higher radix algorithms 
save arithmetic and memory operations 
significantly. However, we also need to 
consider architectural features. First, 
higher radix algorithms require more 
internal storage. For example, in our x86 

32 kB
L1 Cache

Vector
Units

Loop Unrolling

Main
Memory

256 kB
L2 Cache

128 MB Data

64 kB
Buffer

64 kB
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Prefetch or
DMA or
Scatter/Gather 
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[FIG2] FFT double buffering scheme.
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 implementations, a radix-2 implementation uses four variables, 
while a radix-4 implementation needs 14 variables, and a radix-8 
implementation needs 20 variables. Since only 16 SIMD regis-
ters are available for x86 SSE, a radix-8 implementation requires 
register spilling and filling, which will degrade performance. 
Second, higher radix algorithms can be used only for specific 
data sizes. For example, a radix-8 algorithm is used for power-
of-eight FFT. So, if we perform a 1,024-point FFT, we should 
mix it with lower radix stages (two radix-4 stages and two 
radix-8 stages). Generally, the best-known-method is to use 
mixed radix algorithms that are composed of as high radix algo-
rithms as possible for the microprocessor architecture and 
lower radix algorithms to match the given data size. Automatic 
code generation tools such as [12] and [19] can be very helpful 
because they can search the design space automatically.

MULTIDIMENSIONAL FFT
A multidimensional FFT is a collection of 1-D FFTs. It performs 
multiple 1-D FFTs with respect to each dimension. However, it 
creates long-stride memory accesses. Because data is stored in 
memory contiguously along with one dimension, memory 
accesses in other dimensions always result in long stride. For 
example, in Figure 3, row-wise FFTs access data contiguously, 
while column-wise FFTs access data in 2K stride. Long-stride 
memory accesses cause two problems. 1) Vectorizing is difficult 
because data is not located contiguously, and 2) cache behavior 
suffers from conflicts especially if the stride is power-of-two.

One solution is to perform a matrix transpose between 
dimension switch. Once row-wise FFTs are done, we transpose 
the matrix to switch rows and columns, then perform another 
row-wise FFTs. Another technique is to execute column-wise 
FFTs of the vector width, shown in Figure 3. After finishing row-
wise FFTs, it performs column-wise FFTs directly without the 
transpose. Instead, it computes multiple columns of the vector 
width (W) simultaneously. 

The first approach incurs matrix transpose penalty. But once 
the matrix is transposed, its performance is always optimized as 
the row-wise FFT. The second approach allows vectorization 
easily. But it suffers from column-wise memory accesses, result-
ing in much slower column-wise FFTs. The tradeoff between the 
matrix transpose and the column-wise accesses is data and 
machine dependent. It is related to data size and data dimen-
sion, as well as cache size and memory latency. In practice, we 
found that the optimal design point changes from one data set 
to another. To choose the right scheme for a given multi-
dimensional FFT, we should profile each implementation and 
compare its actual performance. Automatic tools can help 
decide the right choice.

MATRIX TRANSPOSE
Matrix transpose is a crucial memory operation in FFT to 
enable vectorization and parallelization. We discuss a cache effi-
cient parallel transpose algorithm. In Figure 4, we divide the 
entire matrix into smaller blocks denoted by A1, A2, and so on. 
Each block performs a matrix transpose A1 to A19, A2 to A29, 

etc. Assume Core 1 and Core 2 share the cache. Core 1 is now 
transposing A1 to A19. If we assign B1 to Core 2, it will suffer 
from cache conflicts in writing to B19 because Core 1 is writing 
to A19. Remember that column-wise accesses cause cache con-
flicts. If we assign C1 to Core 2, it will also exhibit cache con-
flicts because Core 1 is reading from A1. To avoid cache 
conflicts, Core 2 should be working on A2. Once the cores are 
done with A1, and A2, they will move to B1 and B2, which are 
also conflict free. Therefore, the right policy is to assign blocks 
to cores with staggering.

CONVOLUTION
Convolution is used for many image filters such as blur, 
emboss, and sharpen. Figure 5 illustrates an example of a con-
volution. It overlays an n-tap filter on a set of n input pixels, 
multiplies the corresponding values, and accumulates the 
results into an output pixel. In most cases (except small-size 
1-D filters) its compute-to-memory ratio is high and exhibits 
very regular operations. The arithmetic operations are multi-
ply-add, and the data access patterns are streaming. However, 
because the convolution filter slides from the first pixel to the 
last, it has a memory alignment issue.

[TABLE 2] COMPUTATION REQUIREMENTS 
FOR A 4K SINGLE-PRECISION COMPLEX FFT.

LOADS/STORES ADDS/SUBS MULTIPLIES
RADIX-2 196,608 147,456 98,304
RADIX-4 98,304 135,168 73,728
RADIX-8 65,536 102,400 32,768

2k
2k

W
1

2k 2k

Row-wise FFT Column-wise FFT

[FIG3] Column-wise FFT for a 2K 3 2K 2-D FFT.

[FIG4] Cache conflict-free matrix transpose.

C1′

A2′

A3′

B1′

B2′

C2′A2

A3

C1

C2

B2

A1 B1 A1′

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE   [102]   MARCH 2010

SINGLE-CORE OPTIMIZATION: 
MEMORY ALIGNMENT
Memory alignment is the biggest hurdle in vectorizing convo-
lution. In many vector architectures like x86 SSE, data should 
be aligned in memory to take advantage of vector instructions. 
For example, in Figure 5 the input and output are located in 
memory so that their first elements are aligned. We can access 
a four-wide vector for [x1, x2, x3, x4] fast, but accesses to a vec-
tor [x2, x3, x4, x5] will pay unalignment penalty. The convolu-
tion filter slides over the input one-by-one. So, it might access 
an aligned data at some point, but the next access will be 
unaligned. To calculate output y1, we overlay the filter on input 

[x1, x2, x3] that is aligned. But, for output y2, we need to read 
unaligned [x2, x3, x4].

We discuss two vectorization algorithms to address the 
memory alignment. The first one is shown in Figure 6(a). To 
calculate an output vector [y1, y2, y3, y4], it performs three vec-
tor multiplications and sums them up: [f 3, f 3, f 3, f 3] * [x1, x2, 
x3, x4], [f 2, f 2, f 2, f2] * [x2, x3, x4, x5], and [f1, f1, f1, f1] * [x3, 
x4, x5, x6]. It contains one aligned and two unaligned reads. 
Writes to the output is always aligned. The filter coefficients are 
also aligned because they can be preallocated into the right for-

mat. Figure 6(b) shows the second algo-
rithm. It executes six vector operations to 
calculate the same output. It requires 
more steps because it does not utilize the 
vector fully. For example, the first calcula-
tion performs only one multiplication 
(f 3 * x1) out of four-wide vector wasting 
the remaining three computing capability. 
Though the first algorithm may look bet-
ter at glance, the second one is better in 
practice. The unaligned memory overhead 
causes more performance degradation 
than the vector inefficiency.

Figure 7 shows the comparison of the 
computation efficiency of the two algo-
rithms. The filter size varies from one to 

64 for the vector width four and 16, assuming the unaligned 
vector loads are on average 2x more expensive than aligned 
ones. The first algorithm (Algorithm 1) remains at low effi-
ciency about 50% throughout the range, while the second 
algorithm (Algorithm 2) achieves much higher efficiency. 
Especially, as the filter size gets larger, its unused vector capac-
ity decreases, thus its efficiency improves approaching 100%.

MULTICORE EFFICIENCY: THREADING OVERHEAD
Parallelizing convolution to multiple cores is easy because 
arithmetic computations and memory operations are very regu-
lar. We can distribute the data evenly across the cores. Data 
sharing between cores occurs at partition boundaries. It is a 
read sharing, not a true data communication, thus resulting in 
very small performance loss.

Overall, we achieve a good scalability on a Core i7 system as 
shown in Figure 8. However, if the data size is too small, the 
multicore scalability starts saturating as the 128 3 128 image 
on four cores. Thread management overhead, such as thread 
creation and termination, increases as the number of core 
increases. Even though the main computation scales linearly, 
the overall performance is saturated if the parallel task is too 
small for the threading overhead.

MEMORY MANAGEMENT: 
CACHE BLOCKING AND DATA PREFETCHING
The basic memory management strategy is to stream the input 
and output only once and maintain all the other data in the 
cache or register. Convolution filters are usually smaller than 

[FIG5] Memory alignment in a three-tap 1-D convolution (arrows 
represents memory alignment points for four-wide vector).

f3 f2 f1Filter:

x1 x2 x3 x4 xN

y1 y2 y3 y4 yN

Input:

Output: y5 y6 y7 y8

x5 x6 x7 x8 . . .

. . .

[FIG6] Vectorizing algorithms for convolution (a circled computation is performed by one 
vector operation): (a) Algorithm 1 and (b) Algorithm 2. 
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[FIG7] Efficiency comparison between the two vectorized 
convolution algorithms for various filter size and vector width.
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the cache and in many cases smaller than the register file. 
However inputs and outputs are huge, so we should stream 
them from the memory. To compute an output, we need to read 
multiple inputs. There are data reuses, which we can take 
advantage of. Once the data is read from memory, we should 
keep them in the cache as long as they are required.

Figure 9 shows a 3 3 3 convolution. To calculate an output, 
it reads the surrounding nine inputs. Scheme 1 is cache igno-
rant. It computes an output and moves on to the next until it 
reaches the end of the row. Then, it returns back to the next 
row. Though consecutive two rows share some of the inputs, 
Scheme 1 cannot exploit it. When calculating the first output 
of a row, it reads a 3 3 3 input block to the cache. But, when it 
reaches at the end of the row, the first 3 3 3 inputs will be 
probably kicked out (especially if the image size is big). When 
it calculates the next row, it should reload all the 3 3 3 inputs 
again from the memory, though 2 3 3 inputs of which have 
been already read before. Scheme 2 solves the problem by 
cache blocking. Instead of moving to the end of a row, it stops 
at some point and moves down to the next row. It can reuse 
the inputs from the previous row before they are replaced from 
the cache.

The table in Figure 9 compares the two schemes in our Core 
i7 implementation. It shows the speedup of the cache blocking 
over the cache ignorance. For a small data (1,024 3 1,024 
image), they are almost identical. However, as the data size gets 
bigger (2,048 3 2,048 image), the cache blocking is about 1.14x 
faster than the cache ignorance.

Data prefetching is another important memory optimization. 
Modern microprocessors are equipped with sophisticated hard-
ware prefetchers. However, multicore systems tend to adopt 
simpler cores that cannot afford such complex hardware 
prefetchers. Therefore, software prefetching can improve perfor-
mance significantly. In addition, software prefetching is even 
more important if data structures are complex (to handle multi-
dimensional matrix) and memory patterns are nonlinear (to 
implement cache blocking). Though software prefetching is dif-
ficult in general, because memory access patterns in convolu-
tion are predetermined, programmers can insert software 
prefetches easily.

HISTOGRAM
Histogram is a statistical method to calculate the frequency of 
events. It is commonly used as a preprocessing step for other 
image filters. Its main operation is a table update. For each 
input value, it calculates the table index and updates the table 
entry. The most common index function and update operator 
are a range calculation and frequency increment. In practice, 
various index functions and update operators are used. The 
input access pattern is a simple read streaming. However, a table 
update causes a data-dependent indirect scattered writes, which 
makes vectorization and parallelization difficult. We cover the 
best known methods: serialization and privatization. We also 
look into a large histogram case that traditional solutions can-
not handle well.

SINGLE-CORE OPTIMIZATION: 
ELEMENT ALIAS AND SCATTERED INDEX
Vectorizing histogram is difficult due to the two problems: ele-
ment alias and scattered index. Element alias means that two or 
more elements within a vector point to the same table entry. 
We should resolve the index conflict as the original nonvector 
codes intend to. For example, if two elements point to the same 
table entry and the table update operator is addition, the entry 
should be incremented by two. However, conventional vector 
add instructions do not provide ordering within a vector. 
Instead of adding twice (one-after-another), it will update the 
entry only once. The second problem is scattered index. 
Because the table entry indices are calculated from the input, 
their values are arbitrary. As a result, elements within a vector 
can point to noncontiguous table entries. This causes perfor-
mance loss, because normal vector operations execute only on 
contiguous memory locations.

A simple solution for element alias is serialization, i.e., ele-
ments are serially processed one by one. In other words, no vec-
torization is done and we lose the benefit of vector computation. 
A more sophisticated method is to detect index conflict. The indi-
ces within one vector are compared with each other to identify 
conflicts. For example, if two elements of value “1” conflict with 
the same index, we combine them into one element of value “2.”

Scattered index problems can be also solved by serialization. 
Because it uses only scalar instructions, a scattered index is not 
a problem. However, some systems support gather/scatter 
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[FIG8] Multicore scalability of a 5 3 5 convolution on Core i7 
four cores.
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[FIG9] Cache blocking of a 3 3 3 convolution and its performance 
impact on Core i7 one core.
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 operations, which handle noncontiguous memory accesses for 
vector. Gather/scatter instructions grab scattered data into a 
contiguous memory location. Instead of normal vector loads/
stores we can use gathers/scatters, which will solve the scattered 
index problem.

We showed two vectorization approaches: serialization and 
conflict detection 1 gather/scatter. Note that conflict detection 
and gather/scatter should be used together. Neither one of them 
can provide vectorization alone. Basically, serialization is not 
using vectors at all, thus the latter vectorization technique will 
provide better performance. However, it is not always true in 
reality. Conflict detection and gather/scatter instructions are
not free, and actually very expensive in today’s platforms. We 
observe that their overheads outweigh their benefits; thus seri-
alization is faster than vectorization for today’s systems. 
However, future multicore architectures will address the perfor-
mance of those operations, and then we will be able to use the 
vectorization technique discussed here.

MULTICORE OPTIMIZATION: 
ATOMIC REDUCTION AND LARGE TABLE ENTRY 
When parallelizing histogram, we should solve the parallel 
reduction problem. If two or more cores try to update the same 
table entry, each update should be atomic. In Figure 10(b), two 
cores update the same entry whose current value is two. If their 
operations are additions, the correct result will be four. However, 
if atomicity is not guaranteed, the result can be three. When one 
core reads the current value, another core may also read the 
same value. If both of them write the data, one increment opera-
tion is lost. For correctness, we should provide atomicity during 
the “read-modify-write” operation.

Traditionally there are two solutions: locking and privatiz-
ing. Locking is to reserve a memory location. A core locks a 
table entry, updates it, and unlocks it. While the table entry is 
locked, other cores cannot access it. Many multicore systems 
provide hardware support for locking only for simple opera-
tions like addition and subtraction. If the table update opera-
tors are complicated, we may need to implement software 

locking. Another solution is privatizing. Instead of updating 
the global table simultaneously, each core maintains its “pri-
vate” copy of histogram. Because the private table is accessed 
by the core exclusively, atomicity is guaranteed. However, this 
solution requires merging all private copies back to the global 
table at the end.

The two solutions have pros and cons. Locking is expensive 
even with hardware support. Privatizing requires global reduc-
tion. Worse yet, both solutions do not scale well with increasing 
number of cores. In today’s systems, the cost of locking over-
head is usually higher than privatizing overhead, so privatizing 
is widely  adopted as a general solution. However, future systems 
will provide better hardware primitives for locking, and locking 
will therefore become an alternate solution. 

Parallelizing a large histogram is a difficult problem. It 
exhibits very different behavior from small histograms, thus 
it requires special optimization. Both the locking and priva-
tizing are not effective. Especially, in the privatizing, the 
global reduction overhead is proportional to the table size 
and it gets worse as we increase the number of cores. (Each 
private table is the same size as the global histogram and one 
private table per each core is needed.)

Figure 11 compares the locking and privatizing for a large 
histogram. For small number of cores, the privatizing is better 
because the locking suffers from its fixed synchronization over-
head. As the number of cores increases, the locking becomes 
better because the privatizing is hit by the large table size. In a 
Core i7 system, we scale only up to four cores, thus we do not 
see such a situation. However, where we scale to many cores, we 
might see a cross-over point that the locking becomes better 
than the privatizing. In any case, overall scalability of both tech-
niques is poor.

We propose a hybrid algorithm that outperforms the locking 
and privatizing. Its performance is also shown in Figure 11. Our 
technique combines both techniques and, in addition, exploits 
the cache. It is based on the observation that nonzero entries 
are sparse though the table may be large. If we privatize only the 
nonzeros, we can eliminate a lot of overhead.
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[FIG10] Challenges in vectorizing and parallelizing the histogram: (a) element alias and scatter index and (b) atomic reduction.  
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Figure 12 shows an over-
view of the proposed algo-
r i thm. We pr ivat ize  the 
histogram table, where we 
effectively use the cache. 
Though the table size is large, 
only nonzero elements are 
cached, thus its working set will fit into the cache. Once the 
local table updates are done, we perform the global reduction. 
The original privatizing scheme reduces the entire private 
tables blindly. However, we only reduce nonzero entries. The 
original scheme does not require an atomic update because 
each core is assigned to different histogram entries so that 
there will be no conflict. However, our scheme needs an 
atomic update because nonzero elements of each core can be 
mapped to the same global entry. We implement an atomic 
update using the locking scheme. The proposed scheme 
works only if nonzero elements are sparse. We observe many 
sparse histograms are used in practice, for which our algo-
rithm provide a reasonable solution.

IMPACT OF OPTIMIZATION
We illustrate the impact of architecture-aware optimization 
by showing the performance analysis of an FFT implementa-
tion on an Intel’s Core i7 system. We implement a 2K 3 2K 
FFT, and compare the performance of two different optimiza-
tion approaches.

The first implementation step is to choose an algorithm. 
Assume that a naïve approach uses a radix-2 algorithm, but an 
optimized approach takes a radix-4 algorithm. Our hand- 
optimized implementations of both algorithms show that the 
radix-4 is 1.72x faster than the radix-2. The second decision is 
which vectorization scheme to use. The naïve one stops vector 
execution when the butterfly stride becomes less than four (the 
vector width of x86 SSE), while the optimized one keeps vector-
izing to the final stage with the matrix 
transpose technique. In our implementa-
tions, full vectorization provides 1.18x 
speedup. The third decision is which par-
allelization method to use. We use the 
same parallelization scheme for both, 
because a trivial parallelization (assigning 
independent FFTs to each core) works 
well. However, the optimized approach 
uses a dynamic task scheduling for better 
load balancing while the naïve one use a 
static partitioning. Both schemes show 
almost identical performance for small 
number of cores (four cores). The fourth 
decision is which memory management 
scheme to use. The naïve implementation 
does not use any intelligent method and 
depends on the hardware prefetcher. The 
optimized one uses the double-buffering 
technique, which results in 1.14x speedup. 

The final decision is which col-
umn-wise FFT scheme to use. 
The naïve scheme accesses the 
 column-wise data directly, 
while the optimized one 
 performs a matrix transpose 
before executing column-wise 

FFTs. Our implementation shows that the matrix transpose 
scheme is 1.16x faster than the direct access scheme. Overall, 
the optimized approach [30.1 giga floating-point operations per 
second (Gflops)] can achieve 2.68x speedup over the naïve 
approach (11.2 Gflops), which is summarized in Table 3.

We do not show a detailed performance analysis of convolu-
tion or histogram. Instead, Figure 13 summarizes our 
 performance optimization results. It compares naïve implemen-
tations and our optimizations. The naïve approach uses only 
basic vectorization and parallelization, while we take advantage 
of architecture-aware optimizations discussed in this article. We 
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[FIG12] Hybrid algorithm for a large histogram.
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observed that performance optimization 
achieves from 1.19x to 2.68x speedup in 
various usage scenarios.

Figure 14 presents the multicore per-
formance of the optimized and naïve 
implementations. It shows the normalized 
speedup with respect to one-core naïve 
performance. Initially, our optimization 
achieves higher single-core efficiency. 
Then, our optimization improves multi-
core scalability. Overall, combining the 
improvements in single-core efficiency 
and multicore scalability, our optimiza-
tion accomplishes 9.8x (FFT), 6.5x (con-
volution), and 3.4x (histogram) speedup 
over one-core naïve implementations.

Relevance of optimization techniques 
discussed in this article is expected to 
grow as more cores are integrated into 
the multicore platform (e.g., Intel 
Larrabee whose architecture and vector 
instruction set are summarized in [22] 
and [1]). We discuss how our optimiza-
tion techniques can be applied. First, 
since Larrabee architecture provides a 
natural extension to the conventional x86 
programming model, the same optimiza-
tion techniques can be applied to both 
Core i7 and Larrabee. Second, when opti-
mizing for single core performance, wider 
(512-b) SIMD emphasizes the importance 
of vectorized algorithms. One should also 
note the growing SIMD width of tradi-
tional x86 multicores from 128b SSE to 
256b AVX [24]. Third, since cores are 
connected with a high-speed on-die 

[TABLE 3] PERFORMANCE ANALYSIS OF A 2K 3 2K SINGLE-PRECISION COMPLEX 
FFT BETWEEN A NAÏVE AND OPTIMIZED APPROACHES ON CORE I7 FOUR CORES.

NAÏVE OPTIMIZED

SPEEDUP
(OPTIMIZED
OVER NAÏVE)

ALGORITHM RADIX-2 RADIX-4 1.72X

VECTORIZATION
PARTIAL
VECTORIZING

FULL
VECTORIZING 1.18X

PARALLELIZATION
STATIC 
PARTITIONING

DYNAMIC
PARTITIONING 1.00X

MEMORY 
MANAGEMENT

HARDWARE 
PREFETCHING

DOUBLE 
BUFFERING 1.14X

COLUMN-WISE 
FFT

DIRECT COLUMN-WISE 
ACCESS

MATRIX 
TRANSPOSE 1.16X

OVERALL 11.2 GFLOPS 30.1 GFLOPS 2.68X
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[FIG13] Performance improvement of our optimization over naïve implementation for 
selected image processing kernels on Core i7 four cores.
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 interconnect in Larrabee, lower costs in thread communica-
tion, and synchronization help multicore scalability. Lastly, 
optimizing for off-chip memory bandwidth becomes more 
important as on-die compute-density is expected to grow faster 
than external memory bandwidth. Traditional blocking tech-
niques can therefore be expected to offer better performance 
return taking advantage of lower latency on-die caches and 
 high-bandwidth  on-die interconnect. In summary, our tech-
niques allow the signal processing algorithms to achieve opti-
mal performance in today’s  platforms and enable them to 
scale forward to optimal performance in tomorrow’s platforms.

CONCLUSION
The computing industry is entering a new era of multicore 
architectures. Future multicore platforms will provide order-
of-magnitude higher computational power than traditional 
single-core systems. Architecture-aware optimization allows 
us to approach optimal application performance on multi-
core systems. This article demonstrates the benefits of archi-
tecture-aware optimization. We define and then apply a set of 
optimization techniques to three common image processing 
kernels on Intel’s x86 multicore processors. Architecture-
blind naïve implementations cannot realize the full capability 
of the multicore system. Our optimizations help improve 
performance by 1.19x to 2.68x on a four-core Core i7 system 
through better vector utilization, higher multicore scalabili-
ty, and more efficient bandwidth usage. We hope the optimi-
zation techniques and illustrative examples in this article 
provide a tutorial to aid developers of image processing 
applications to achieve optimal performance on future x86 
multicore systems.
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Building Correlators 
with Many-Core 
Hardware

R
adio telescopes typically 
consist of multiple receivers 
whose signals are cross-cor-
related to filter out noise. A 
recent trend is to correlate in 

software instead of custom-built hardware, 
taking advantage of the flexibility that software 
solutions offer. Examples include e-VLBI and the 
low frequency array (LOFAR). However, the data rates 
are usually high and the processing requirements challeng-
ing. Many-core processors are promising devices to provide the 
required processing power. In this article, we explain how to 
implement and optimize signal-processing applications on multi-
core CPUs and many-core architectures, such as the Intel Core i7, 
NVIDIA and ATI graphics processor units (GPUs), and the Cell/BE. 
We use correlation as a running example. The correlator is a 
streaming, possibly real-time application, and is much more input/
output (I/O) intensive than applications that are typically imple-
mented on many-core hardware today. We compare with the 
LOFAR production correlator on an IBM Blue Gene/P (BG/P) 
supercomputer. We discuss several important architectural prob-
lems which cause architectures to perform suboptimally, and also 
deal with programmability. 

The correlator on the BG/P achieves a superb 96% of the theo-
retical peak performance. We show that the processing power and 
memory bandwidth of current GPUs are highly imbalanced. 
Because of this, the correlator achieves only 16% of the peak on ATI 
GPUs, and 32% on NVIDIA GPUs. The Cell/BE processor, in con-
trast, achieves an excellent 92%. Many of the insights we discuss 
here are not only applicable to telescope correlators, but are valu-
able when developing signal-processing applications in general.

INTRODUCTION
Radio telescopes produce enormous amounts of data. LOFAR [1], 
for instance, will produce some tens of petabits per day, and the 
Australian square kilometer array pathfinder (ASKAP) will even 

[Rob V. van Nieuwpoort and John W. Romein]
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produce over six exabits per day [2]. These modern radio tele-
scopes use many separate receivers as building blocks and com-
bine their signals to form a single large and sensitive instrument. 

To extract the sky signal from the system noise, the correlator 
coordinates the signals from different receivers, and integrates 
the correlations over time to reduce the amount of data. This is a 
challenging problem in radio astronomy, since the data volumes 
are large and the computational demands grow quadratically 
with the number of receivers. Correlators are not limited to 
astronomy but are also used in geophysics [3], radar systems [4], 
and wireless networking [5]. 

Traditionally, custom-built hardware, and later field program-
mable gate arrays (FPGAs), were used to correlate telescope sig-
nals. A recent development is to use a supercomputer [6]. Both 
approaches have important advantages and disadvantages. 
Custom-built hardware is efficient and consumes modest 
amounts of power but is inflexible, expensive to design, and has a 
long development time. Solutions that use a supercomputer are 
much more flexible, but are less efficient and consume more 
power. Future instruments, like the square kilometer array 
(SKA), need several orders of magnitude more computational 
resources. It is likely that the requirements of the SKA cannot be 
met by using current supercomputer technology. Therefore, it is 
important to investigate alternative hardware solutions. 

General-purpose architectures no longer achieve perfor-
mance improvements by increasing the clock frequency but by 
adding more compute cores and by exploiting parallelism. Intel’s 
recent Core i7 processor is a good example of this. It has four 
cores and supports additional vector parallelism. Furthermore, 
the high-performance computing community is steadily adopt-
ing clusters of GPUs as a viable alternative to supercomputers, 
due to their unparalleled growth in computational performance, 
increasing flexibility and programmability, high power efficiency, 
and low purchase costs. GPUs are highly parallel and contain 
hundreds of processor cores. An example of a processor that 
combines GPU and central processing unit (CPU) qualities into 
one design is the Cell Broadband Engine (Cell/BE) [7]. The Cell/
BE consists of an “ordinary” PowerPC core and eight powerful 
vector processors that provide the bulk of the processing power. 
Programming the Cell/BE requires more effort than program-
ming an ordinary CPU, but various studies showed that the Cell/
BE performs well on signal-processing tasks like fast Fourier 
transforms (FFTs) [8]. 

In this article, we explain how many-core architectures can be 
exploited for signal-processing purposes. We give insights into 
their architectural limitations, and how to best cope with them. 
We treat five different, popular architectures with multiple cores: 
the Cell/BE, GPUs from both NVIDIA and ATI, the Intel Core i7 
processor, and the BG/P supercomputer. We discuss their similar-
ities and differences, and how the architectural differences affect 
optimization choices and the eventual performance of a correla-
tor. We also discuss the programmability of the architectures. We 
focus on correlators but many of the findings, claims, and optimi-
zations hold for other signal-processing algorithms as well, both 
inside and outside the area of radio astronomy. For instance, we 

discussed radio-astronomy imaging (another signal processing 
algorithm) on many-core hardware in previous work [9]. 

In this article, we use the LOFAR telescope as a running 
example and use its production correlator on the BG/P as a com-
parison. This way, we demonstrate how many-core architectures 
can be used in practice for a real application. For educational pur-
poses, we made the correlator implementations for all architec-
tures available online. They exemplify the different optimization 
choices for the different architectures. The code may be reused 
under the GNU public license. We describe and analyze the corre-
lator on many-core platforms in much more detail in [10]. 

TRENDS IN RADIO ASTRONOMY
During the past decade, new types of radio-telescope concepts 
emerged that rely less on concrete, steel, and extreme cooling 
techniques, but more on signal-processing techniques. For 
example, LOFAR [1], Karoo Array Telescope (MeerKAT) [11], and 
ASKAP [2] are distributed sensor networks that combine the sig-
nals of many receiver elements. All three are pathfinders for the 
future SKA [12] telescope, which will be orders-of-magnitude 
larger. These instruments combine the advantages of higher sen-
sitivity, higher resolution, and multiple concurrent observation 
directions. However, they require huge amounts of processing 
power to combine the data from the receiving elements. 

The signal-processing hardware technology used to process 
telescope data also changes rapidly. Only a decade ago, correla-
tors required special-purpose application-specific integrated cir-
cuits (ASICs) to keep up with the high data rates and processing 
requirements. The advent of sufficiently fast FPGAs significantly 
lowered the developments times and costs of correlators and 
increased the flexibility substantially. LOFAR requires even more 
flexibility to support many different processing pipelines for vari-
ous observation modes, and uses FPGAs for on-the-field process-
ing and a BG/P supercomputer to perform real-time central 
processing. We describe LOFAR in more detail below. 

THE LOFAR TELESCOPE
LOFAR is an aperture array radio telescope operating in the 
10–250 MHz frequency range [1]. It is the first of a new genera-
tion of radio telescopes that breaks with the concepts of tradition-
al telescopes in several ways. Rather than using large, expensive 
dishes, LOFAR uses many thousands of simple antennas that have 
no movable parts (see Figure 1). Essentially, it is a distributed sen-
sor network that monitors the sky and combines all signals cen-
trally. This concept requires much more signal processing, but 
the costs of the silicon for the processing are much lower that the 
costs of steel that would be needed for dishes. Moreover, LOFAR 
can observe the sky in many directions concurrently and switch 
directions instantaneously. In several ways, LOFAR will be the 
largest telescope of the world. The antennas are simple, but there 
are a lot of them —44,000 in the full LOFAR design. To make radio 
pictures of the sky with adequate resolution, these antennas are to 
be arranged in clusters. In the rest of this article, we call a cluster 
of antennas “receivers.” The receivers will be spread out over an 
area of ultimately 350 km in diameter. This is shown in Figure 2. 
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Data transport requirements are in the range of many terabits/s 
and the processing power needed is tens of tera-ops. 

Another novelty is the elaborate use of software to process 
the telescope data in real time. LOFAR thus is an IT-telescope. 
The cost is dominated by the cost of computing and will follow 
Moore’s law; becoming cheaper with time and allowing increas-
ingly large telescopes to be built. 

LOFAR will enable exciting new science cases. First, we 
expect to see the epoch of reionization, the time that the first 
star galaxies and quasars were formed. Second, LOFAR offers a 
unique possibility in particle astrophysics for studying the origin 
of high-energy cosmic rays. Third, LOFAR’s ability to continu-
ously monitor a large fraction of the sky makes it uniquely suited 
to find new pulsars and to study transient  sources. Since LOFAR 
has no moving parts, it can instantaneously switch focus to some 
galactic event. Fourth, deep extragalactic surveys will be carried 
out to find the most distant radio galaxies and study star-forming 
galaxies. Fifth, LOFAR will be capable of observing the so far 
unexplored radio waves emitted by cosmic magnetic fields. For a 
more extensive description of the astronomical aspects of the 
LOFAR system, see [13]. 

A global overview of the LOFAR processing is given in Figure 3. 
The thickness of the lines indicates the size of the data streams. 
Initial processing is done in the field, using FPGA technology. 
Typical operations that are performed there include 
 analog-to-digital conversion, filtering, frequency selection, and 
combination of the signals from the different antennas. Next, the 
data is transported to the central processing location in Groningen, 
The Netherlands, via dedicated optical wide-area networks. 

The real-time central processing of LOFAR data is done on a 
BG/P supercomputer. There, we filter the data and perform 
phase-shift and bandpass-corrections. Next, the signals from all 
receivers are cross correlated. The correlation process performs a 
data reduction by integrating samples over time. Finally, the data 
is forwarded to a storage cluster, where results can be kept for 
several days. After an observation has finished, further process-
ing, such as radio frequency interference (RFI) removal, calibra-
tion, and imaging is done offline on commodity cluster hardware. 
In this article, we focus on the correlator step (the highlighted 
part in the red box in Figure 3), because it must deal with the 
full data streams from all receivers. Moreover, its costs grow qua-
dratically with the number of receivers, while all other steps have 
a lower time complexity. 

CORRELATING SIGNALS
LOFAR’s receivers are dual-polarized; they take separate samples 
from orthogonal (X and Y) directions. The receivers support 4-, 8-, 
and 16-b integer samples, where the normal mode of operation 
uses the 16-b samples to help mitigate the impact of strong RFI. 
The smaller samples are important for observations that require 
larger sky coverage. Before filtering and correlating, the samples 
are converted to single-precision floating point, since all architec-
tures support this well. This is accurate enough for our purposes. 
From the perspective of the correlator, samples thus consist of 
four 32-b floating-point numbers: two polarizations, each with a 
real and an imaginary part. 

LOFAR uses an FX correlator: it first filters the different fre-
quencies and then correlates the signals. This is more efficient 
than an XF correlator for larger numbers of receivers. In FX and 
XF, F means frequency separation and X means correlation (multi-
plication of the signal).

Prior to correlation, the data that comes from the receivers 
must be reordered: each input carries the signals of many frequen-
cy bands from a single receiver, but the correlator needs data from 
a single frequency of all inputs. Depending on the data rate, 
switching the data can be a real challenge. The data reordering 
phase is outside the scope of this article, but a correlator imple-
mentation cannot ignore this issue. The LOFAR BG/P correlator 
uses the fast three-dimensional torus for this purpose; other mul-
ticore architectures need external switches. 

The received signals from sky sources are so weak, that the 
antennas mainly receive noise. To see if there is statistical coher-
ence in the noise, simultaneous samples of each pair of receivers 
are correlated, by multiplying the sample of one re  ceiver with the 
complex conjugate of the sample of the other receiver. To reduce 
the output size, the correlations are integrated over time, by 

[FIG1] A field with LOFAR antennas (photo courtesy of ASTRON).
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[FIG2] LOFAR layout.
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 accumulating all products. Therefore, the correlator is mostly 
multiplying and adding complex numbers. Both polarizations of a 
station A are correlated with both polarizations of a station B, 
yielding correlations in XX, XY, YX, and YY directions. The correla-
tor algorithm itself thus is straight forward, and can be written in a 
single formula 

 Cs1,s2$s1, p1[5X,Y6,p2[5X, Y6 5 a
t

Zs1,t,p1 *  Zs2,t,p2

* . 

The total number of correlations we have to compute is 
1nrReceivers 3 1nrReceivers 1 1 2 2 /2, since we need each pair 
of correlations only once. This includes the autocorrelations (the 
correlation of a receiver with itself), since we need them later in 
the pipeline for calibration purposes. The autocorrelations can be 
computed with fewer instructions. We can implement the correla-
tion operation very efficiently, with only four fused-multiply-add 
(FMA) instructions, doing eight floating-point operations in total. 
For each pair of receivers, we have to do this four times, once for 
each combination of polarizations. Thus, in total we need 32 oper-
ations. To perform these operations, we have to load the samples 
generated by two different receivers from memory. As explained 
above, the samples each consist of four single-precision floating-
point numbers. Therefore, we need to load eight floats or 32 B in 
total. This results in exactly one floating-point operations per sec-
ond (FLOP)/byte. We will describe the implementation and opti-
mization of the correlator on the many-core systems in more 
detail in the section “Implementation and Optimization,” but first, 
we explain the architectures themselves. 

MANY-CORE ARCHITECTURES
In this section, we explain key properties of five different architec-
tures with multiple cores and the most important differences 
between them. Table 1 shows the most important properties of the 
different many-core architectures. 

GENERAL-PURPOSE MULTICORE CPUS (INTEL CORE i7) 
As a reference, we implemented the correlator on a multicore gen-
eral-purpose architecture, in this case an Intel Core i7. The theo-
retical peak performance of the system is 85 gflops, in single 
precision. The parallelism comes from four cores with hyper-
threading. Using two threads per core allows the hardware to over-
lap load delays and pipeline stalls with useful work from the other 
thread. The SSE4 instruction set provides single instruction mul-
tiple data (SIMD) parallelism with a vector length of four floats. 

IBM BG/P SUPERCOMPUTER 
The IBM BG/P [14] is the architecture that is currently used for the 
LOFAR correlator. Four PowerPC processor cores are integrated on 
each BG/P chip. Each core is extended with two floating-point 
units (FPUs) that provide the bulk of the processing power. The 
BG/P is an energy-efficient supercomputer. This is accomplished by 
using many small, low-power chips, at a low clock frequency. 

ATI GPUs 
ATI’s GPU with the highest performance is the Radeon 4870 [15]. 
The chip contains 160 cores, with 800 FPUs in total, and has a 
theoretical peak performance of 1.2 teraflops. The board uses a 
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[FIG3] A simplified overview of the LOFAR processing.

[TABLE 1] PROPERTIES OF THE DIFFERENT MANY-CORE PLATFORMS.

ARCHITECTURE INTEL CORE i7 IBM BG/P ATI 4870 NVIDIA TESLA C1060 STI CELL/BE
GFLOPS PER CHIP 85 13.6 1200 936 204.8 
CLOCK FREQUENCY (GHZ) 2.67 0.850 0.75 1.296 3.2 
CORES 3 FPUS PER CORE = TOTAL FPUs 4 3 4 5 16 4 3 2 5 8 160 3 5 5 800 30 3 8 5 240 8 3 4 5 32 
REGISTERS PER CORE 3 REGISTER WIDTH 16 3 4 64 3 2 1024 3 4 2048 3 1 128 3 4 
TOTAL DEVICE RAM BANDWIDTH (GB/s) N.A. N.A. 115.2 102 N.A. 
TOTAL HOST RAM BANDWIDTH (GB/s) 25.6 13.6 4.6 5.6 25.8 
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PCI-express 2.0 interface for communication with the host sys-
tem. The GPU has 1 GB of device memory onboard. It is possible 
to specify if a read should be cached by the texture cache or not. 
Each streaming processor also has 16 KB of shared memory that 
is completely managed by the application. On both ATI and 
NVIDIA GPUs, the application should run many more threads 
than the number of cores. This allows the hardware to overlap 
memory load delays with useful work from other threads. 

NVIDIA GPUs 
NVIDIA’s Tesla C1060 contains a GTX 280 GPU with 240 single-
precision and 30 double-precision FPUs [16]. The GTX 280 uses a 
two-level hierarchy to group cores. There are 30 independent 
multiprocessors that each have eight cores. Current NVIDIA 
GPUs have fewer cores than ATI GPUs, but the individual cores 
are faster. The theoretical peak performance is 933 gflops. The 
number of registers is large: each multiprocessor has 16,384 32-b 
floating-point registers that are shared between all threads that 
run on it. There is also 16 KB of shared memory per multiproces-
sor. Finally, texture-caching hardware is available. The application 
can specify which area of device memory must be cached, while 
the shared memory is completely managed by the application. 

THE CELL/BE 
The Cell/BE [7] is a heterogeneous many-core processor, 
designed by Sony, Toshiba, and IBM (STI). The Cell/BE has nine 
cores: one power processing element (PPE), acting as a main 
processor, and eight synergistic processing elements (SPEs) that 
provide the real processing power. A SPE contains a reduced 
instruction set computing (RISC) core, a 256 KB local store 
(LS), and a direct memory access (DMA) controller. The LS is an 
extremely fast local memory for both code and data and is man-
aged entirely by the application with explicit DMA transfers to 
and from main memory. The LS can be considered the SPU’s 
(explicit) L1 cache. The Cell/BE has a large number of registers: 
each SPU has 128, which are 128-b (four floats) wide. The SPU 
can dispatch two instructions in each clock cycle using the two 
pipelines designated even and odd. Most of the arithmetic 
instructions execute on the even pipe, while most of the  memory 
instructions execute on the odd pipe. For the performance eval-
uation, we use a QS21 Cell blade with two Cell/BE processors. 
The eight SPEs of a single chip in the system have a total theo-
retical single-precision peak performance of 205 gflops. 

MAPPING SIGNAL-PROCESSING 
ALGORITHMS ON MANY-CORE HARDWARE
Many-core architectures derive their performance from paral-
lelism. Several different forms of parallelism can be identified: 
multithreading (with or without shared memory), overlapping 
of I/O and computations, instruction-level parallelism, and vec-
tor parallelism. Most many-core architectures combine several 
of these methods. Unfortunately, an application has to handle 
all available levels of parallelism to obtain good performance. 
Therefore, it is clear that algorithms have to be adapted to effi-
ciently exploit many-core hardware. Additional parallelism can 

be obtained by using multiple processor chips. In this article, 
however, we restrict ourselves to single chips for simplicity. 

FINDING PARALLELISM
The first step is to find parallelism in the algorithm, on all different 
levels. Basically, this means looking for independent operations. 
With the correlator, for example, the thousands of different fre-
quency channels are completely independent, and they can be pro-
cessed in parallel. But there are other, more fine-grained sources 
of parallelism as well. The correlations for each pair of receivers 
are independent, just like the four combinations of polarizations. 
Finally, samples taken at different times can be correlated indepen-
dently, as long as the subresults are integrated later. Of course, the 
problem now is how to map the parallelism in the algorithm to the 
parallelism provided by the architecture. We found that, even for 
the relatively straightforward correlator algorithm, the different 
architectures require very different mappings and strategies. 

OPTIMIZING MEMORY 
PRESSURE AND ACCESS PATTERNS
On many-core architectures, the memory bandwidth is shared 
between the cores. This has shifted the balance between computa-
tional and memory performance. The available memory bandwidth 
per operation has decreased dramatically compared to traditional 
processors. For the many-core architectures we use here, the theo-
retical bandwidth per operation is three to ten times lower than on 
the BG/P, for instance. In practice, if algorithms are not optimized 
well for many-core platforms, the achieved memory bandwidth 
can easily be ten to 100 times lower than the theoretical maxi-
mum. Therefore, we must treat  memory bandwidth as a scarce 
resource, and it is important to minimize the number of memory 
accesses. In fact, one of the most important lessons of this article is 
that on many-core architectures, optimizing the memory proper-
ties of the algorithms is more important than focusing on reduc-
ing the number of compute cycles that is used, as is traditionally 
done on systems with only a few or just one core. 

WELL-KNOWN MEMORY 
OPTIMIZATION TECHNIQUES
The insight that optimizing the interaction with the memory 
system is becoming more and more important is not new. The 
book by Catthoor et al. [17] is an excellent starting point for 
more information on memory-system related optimizations. 

We can make a distinction between hardware and software 
memory-optimization techniques. Examples of hardware-based 
techniques include caching, data prefetching, write combining, and 
pipelining. The software techniques can be divided further into 
compiler optimizations and algorithmic improvements. The dis-
tinction between hardware and software is not entirely black and 
white. Data prefetching, for instance, can be done both in hardware 
and software. Another good example is the explicit cache of the 
Cell/BE processor. This is an architecture where the programmer 
handles the cache replacement policies instead of the hardware. 

Many optimizations focus on utilizing data caches more effi-
ciently. Hardware cache hierarchies can, in principle,  transparently 
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improve application performance. Nevertheless, it is important to 
take the sizes of the different cache levels into account when opti-
mizing an algorithm. A cache line is the smallest unit of memory 
than can be transferred between the main memory and the cache. 
Code can be optimized for the cache line size of a particular 
architecture. Moreover, the associativity of the cache can be 
important. If a cache is N-way set associative, this means that any 
particular location in memory can be cached in either of N loca-
tions in the data cache. Algorithms can be designed such that 
they take care that cache lines that are needed later are not 
replaced prematurely. In addition, write combining, a technique 
that allows data writes to be combined and written later in burst 
mode, can be used if the ordering of writes is not important. 
Finally, prefetching can be used to load data into caches or regis-
ters ahead of time. 

Many cache-related optimization techniques have been 
described in the literature, both in the context of hardware and 
software. For instance, an efficient implementation of hardware-
based prefetching is described in [18]. As we will describe in the 
section “Implementation and Optimization,” we implemented 
prefetching manually in software, for example by using multibuff-
ering on the Cell/BE, or by explicitly loading data into shared 
memory or registers on the GPUs. A good starting point for cache-
aware or cache-oblivious algorithms is [19]. An example of a tech-
nique that we used to improve cache efficiencies for the correlator 
is the padding of multidimensional arrays with extra “dummy” 
data elements. This can be especially important if memory is 
accessed with a stride of a (large) power of two. This way, we can 
make sure that cache replacement policies work well, and subse-
quent elements in an array dimension are not mapped onto the 
same cache location. This well-known technique is described, for 
instance, by Bacon et al. [20]. Many additional data access pat-
terns optimization techniques are described in [17]. 

Many memory-optimization techniques have been developed 
in the context of optimizing compilers and run-time systems 
(e.g., efficient memory allocators). For instance, a lot of research 
effort has been invested in cache-aware memory allocation; see 
e.g., [21]. Compilers can exploit many techniques to optimize 
locality by applying code and loop transformations such as 
interchange, reversal, skewing, and tiling [22]. Furthermore, 
compilers can optimize code for the parameters and sizes of the 
caches by carefully choosing the placement of variables, objects, 
and arrays in memory [23]. 

The memory systems of the many-core architectures are 
quite complex. GPUs, for instance, have banked device memory, 
several levels of texture cache, in addition to local memory, 
application-managed shared memory (also divided over several 
banks), and write combining buffers. There also are complex 
interactions between the memory system and the hardware 
thread scheduler. GPUs literally run tens of thousands of parallel 
threads to overlap memory latencies, trying to keep all func-
tional units fully occupied. We apply the techniques described 
above in software by hand, since we found that the current com-
pilers for the many-core architectures do not (yet) implement 
them well on their complex memory systems. 

APPLYING THE TECHNIQUES
So, the second step of mapping a signal-processing algorithm to a 
many-core architecture is optimizing the memory behavior. We 
can split this step into two phases: an algorithm phase and an 
architectural phase. In the first phase, we identify algorithm-spe-
cific, but architecture-independent optimizations. In this phase, it 
is of key importance to understand that, although a set of opera-
tions in an algorithm can be independent, the data accesses may 
not be. This is essential for good performance, even though it may 
not be a factor in the correctness of the algorithm. The number of 
memory accesses per operation should be reduced as much as 
possible, sometimes even at the cost of more compute cycles. An 
example is a case where different parallel operations read (but not 
write) the same data. For the correlator, the most important 
insight here is a technique to exploit date reuse opportunities, 
reducing the number of memory loads. We explain this in detail 
in the section “Architecture-Independent Optimizations.” 

The second phase deals with architecture-specific optimiza-
tions. In this phase, we do not reduce the number of memory 
loads, but think about the memory access patterns. Typically, 
several cores share one or more cache levels. Therefore, the 
access patterns of several different threads that share a cache 
should be tailored accordingly. On GPUs, for example, this can 
be done by coalescing memory accesses. This means that dif-
ferent concurrent threads read subsequent memory locations. 
This can be counter-intuitive, since traditionally, it was more 
efficient to have linear memory access patterns within a thread. 
Table 2 summarizes the differences in memory architectures 
of the different platforms. Other techniques that are performed 
in this phase include optimizing cache behavior, avoiding load 
delays and pipeline stalls, and exploiting special floating-point 
instructions. We explain several examples of this in more de-
tail in the section “Architecture-Specific Optimizations.”

A SIMPLE ANALYTICAL TOOL
A simple analytic approach, the Bound and Bottleneck analysis 
[24], [25], can provide more insight on the memory properties of 
an algorithm. It also gives us a reality check and calculates what 
the expected maximal performance is that can be achieved on a 
particular platform. The number of operations that is performed 
per byte that have to be transferred (the flop/byte ratio) is called 
the arithmetic intensity (AI) [24]. Performance is bound by the 

[TABLE 2] DIFFERENCES BETWEEN MEMORY 
ARCHITECTURES.

FEATURE CELL/BE GPUS

ACCESS TIMES UNIFORM NONUNIFORM 
CACHE SHARING LEVEL SINGLE THREAD (SPE) ALL THREADS IN A 

MULTIPROCESSOR 
ACCESS TO OFF-CHIP 
MEMORY

THROUGH DMA ONLY SUPPORTED 

MEMORY ACCESS 
OVERLAPPING

ASYNCHRONOUS DMA HARDWARE-
MANAGED THREAD 
PREEMPTION

COMMUNICATION DMA BETWEEN SPES INDEPENDENT
THREAD BLOCKS AND 
SHARED MEMORY 
WITHIN A BLOCK
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product of the bandwidth and the AI:perfmax5 AI 3 bandwidth. 
Several important assumptions are made with this method. First, 
it assumes that the bandwidth is independent of the access pat-
tern. Second, it assumes a complete overlap of communication 
and computation, i.e., all latencies are completely hidden. Finally, 
the method does not take caches into account. Nevertheless, it 
gives a rough idea of the performance than can be achieved. 

It is insightful to apply this method to the correlator on the 
GPUs. We do it for the NVIDIA GPU here, but the results for the ATI 
hardware is similar. With the GPUs, there are several  communication 
steps that influence the performance. First, the data has to be trans-
ferred from the host to the device memory. Next, the data is read 
from the device memory into registers. The host-to-device 
 bandwidth is limited by the low PCI-express throughput, 5.6 GB/s in 
this case. We can easily show that this is a bottleneck by computing 
the AI for the full system, using the host-to-device transfers. (The AI 
can also be computed for the device memory.) 

As explained in the section “Correlating Signals,” the number 
of flops in the correlator is the number of receiver combinations 
times 32 operations, while the number of bytes that have to be 
loaded in total is 16 B times the number of receivers. The number 
of combinations is 1nrReceivers 3  1nrReceivers 1 1 2 2 /2 (see 
the section “Correlating Signals”). If we substitute this, we find 
that the AI 5 nrReceivers 1 1. For LOFAR, we can assume 64 
receivers (each in turn containing many antennas), so the AI is 65 
in our case. Therefore, the performance bound on NVIDIA hard-
ware is 65 3 5.6 5 364 gflops. This is only 39% of the theoretical 
peak. Note that this even is optimistic, since it assumes perfect 
overlap of communication and computation. 

COMPLEX NUMBERS
Support for complex numbers is important for signal processing. 
Explicit hardware support for complex operations is preferable, 
both for programmability and performance. Except for the BG/P, 
none of the architectures support this. The different architectures 
require two different approaches of dealing with this problem. If an 
architecture does not use explicit vector parallelism, the complex 

operations can simply be expressed in terms of normal floating-
point operations. This puts an extra burden on the programmer, 
but achieves good performance. The NVIDIA GPUs work this way. If 
an architecture does use vector parallelism, we can either store the 
real and complex parts alternatingly inside a single vector, or have 
separate vectors for the two parts. In both cases, support for shuf-
fling data inside the vector registers is essential, since complex 
multiplications operate on both the real and imaginary parts. The 
architectures differ considerably in this respect. The Cell/BE excels; 
its vectors contain four floats, which can be shuffled around in arbi-
trary patterns. Moreover, shuffling and computations can be over-
lapped effectively. On ATI GPUs, this works similarly. The SSE4 
instructions in the Intel CPUs do not support arbitrary shuffling 
patterns. This has a large impact on the way the code is vectorized. 

IMPLEMENTATION AND OPTIMIZATION
In this section, we explain the techniques described above by 
applying them to the correlator for all different architectures. 

ARCHITECTURE-INDEPENDENT OPTIMIZATIONS
An unoptimized correlator would read the samples from two 
receivers and multiply them, requiring two sample loads for one 
multiplication. We can optimize this by reusing a sample as often 
as possible, by using it for multiple correlations (see Figure 4). The 
figure is triangular, because we compute the correlation of each 
pair of receivers only once. The squares labeled A are autocorrela-
tions. For example, the samples from receivers 8, 9, 10, and 11 can 
be correlated with the samples from receivers 4, 5, 6, and 7 (the red 
square in the figure), reusing each fetched sample four times. By 
dividing the correlation triangle in 4 3 4 tiles, eight samples are 
read from memory for sixteen correlations, reducing the amount of 
memory operations by a factor of four. The maximum number of 
receivers that can be simultaneously correlated this way (i.e., the 
tile size) is limited by the number of registers that an architecture 
has. The samples and accumulated correlations are best kept in 
registers, and the number of required registers grows rapidly with 
the number of receiver inputs. The example above already requires 
16 accumulators. To obtain good performance, it is important to 
tune the tile size to the architecture. There still is opportunity for 
additional data reuse between tiles. The tiles within a row or col-
umn in the triangle still need the same samples. In addition to reg-
isters, caches can thus also be used to increase data reuse. 

ARCHITECTURE-SPECIFIC OPTIMIZATIONS
We will now describe the implementation of the correlator on 
the different architectures, evaluating the performance and opti-
mizations needed in detail. For comparison reasons, we use the 
performance per chip for each architecture. The performance 
results are shown in Figure 5. 

INTEL CPUs 
The SSE4 instruction set can be used to exploit vector parallelism. 
Unlike the Cell/BE and ATI GPUs, a problem with SSE4 is the lim-
ited support for shuffling data within vector registers. Computing 
the correlations of the four polarizations within a vector is 
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[FIG4] An example correlation triangle.
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 inefficient, and computing four samples with subsequent time 
stamps in a vector works better. The use of SSE4 improves the 
performance by a factor of 3.6 in this case. In addition, multiple 
threads should be used to utilize all four cores. To benefit from 
hyperthreading, twice as many threads as cores are needed. For 
the correlator, hyperthreading increases performance by 6%. Also, 
the number of vector registers is small. Therefore, there is not 
much opportunity to reuse data in registers, limiting the tile size 
to 2 3 2; reuse has to come from the L1 cache. 

THE BG/P SUPERCOMPUTER 
We found that the BG/P is extremely suitable for our applica-
tion, since it is highly optimized for processing of complex 
numbers. However, the BG/P performs all floating-point opera-
tions in double precision, which is overkill for our application. 
Although the BG/P can keep the same number of values in 
register as the Intel chip, an important difference is that the 
BG/P has 32 registers of width two, compared to Intel’s 16 of 
width four. The smaller vector size reduces the amount of 
shuffle instructions needed. In contrast to all other architec-
tures we evaluate, the problem is compute bound instead of I/O 
bound, thanks to the BG/P’s high memory bandwidth per 
operation, which is three to ten times higher than for the 
other architectures. 

ATI GPUs 
The ATI architecture has several important drawbacks for data-
intensive applications. First, the host-to-device bandwidth is a 
bottleneck. Second, overlapping communication with compu-
tation does not work well. We observed kernel slowdowns of 
more than a factor of two due to asynchronous transfers in the 
background. This can clearly be seen in Figure 5. Third, the 
architecture does not provide random write access to device 
memory, but only to host memory. The correlator reduces the 
data by a large amount, and the results are never reused by the 
kernel. Therefore, they can be directly streamed to host memo-
ry. Nevertheless, in general, the absence of random write access 
to device memory significantly reduces the programmability 
and prohibits the use of traditional programming models. ATI 
offers two separate programming models at different abstrac-
tion levels [15]. The low-level programming model is called 
Compute Abstraction Layer (CAL). It provides communication 
primitives and an assembly language, allowing fine tuning of 
device performance. For high-level programming, ATI provides 
Brook+. We implemented the correlator with both models. In 
both cases, the programmer has to do the vectorization, unlike 
with NVIDIA GPUs. CAL provides a feature called swizzling, 
which is used to select parts of vector registers in arithmetic 
operations. We found this improves readability of the code. 
However, the programming tools still are unsatisfactory. The 
high-level Brook+ model does not achieve acceptable perfor-
mance. The low-level CAL model does, but it is difficult to use. 
The best-performing implementation uses a tile size of 4 3 3, 
thanks to the large number of registers. Due to the low I/O per-
formance, we achieve only 16% of the theoretical peak. 

NVIDIA GPUs 
NVIDIA’s programming model is called Compute Unified Device 
Architecture (CUDA) [16]. CUDA is relatively high level, and 
achieves good performance. An advantage of NVIDIA hardware, 
in contrast to ATI, is that the application does not have to do 
vectorization. This is thanks to the fact that all cores have their 
own address-generation units. All data parallelism is expressed 
by using threads. When accessing device memory, it is impor-
tant to make sure that simultaneous memory accesses by differ-
ent threads are coalesced into a single memory transaction. In 
contrast to ATI hardware, NVIDIA GPUs support random write 
access to device memory. This allows a programming model 
that is much closer to traditional models, greatly simplifying 
software development. It is important to use shared memory or 
the texture cache to enable data reuse. In our case, we use the 
texture cache to speedup access to the sample data. CUDA pro-
vides barrier synchronization between threads within a thread 
block. We exploit this feature to let the threads that access the 
same samples run in lock step. This way, we pay a small syn-
chronization overhead, but we can increase the cache hit ratio 
significantly. We found that this optimization improved perfor-
mance by a factor of two. This optimization is a good example 
that shows that, on GPUs, it is important to optimize memory 
behavior, even at the cost of additional instructions and syn-
chronization overhead. 

We also investigated the use of the per-multiprocessor shared 
memory as an application-managed cache. Others report good 
results with this approach [26]. However, we found that, for our 
application, the use of shared memory only led to performance 
degradation compared to the use of the texture caches. 

Registers are a shared resource. Using fewer registers in a 
kernel allows the use of more concurrent threads, hiding load 
delays. We found that using a relatively small tile size (3 3 2) 
and many threads increases performance. The kernel itself, 
without host-to-device communication achieves 38% of the the-
oretical peak performance. If we include communication, the 
performance drops to 32% of the peak. Just like with the ATI 
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[FIG5] Achieved performance on the different platforms: 
percentages are the fraction of the peak for that architecture.
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hardware, this is caused by the low PCI-e bandwidth. With 
NVIDIA hardware, significant performance gains can be achieved 
by using asynchronous host-to-device I/O. 

THE CELL/BE 
With the Cell/BE it is important to exploit all levels of parallel-
ism. Applications deal with task and data parallelism across 
multiple SPEs, vector parallelism inside the SPEs, and multi-
buffering for asynchronous DMA transfers [7]. Acceptable per-
formance can be achieved by programming the Cell/BE in C or 
C11, while using intrinsics to manually express vector paral-
lelism. Thus, the programmer specifies which instructions have 
to be used but can typically leave the instruction scheduling and 
register allocation to the compiler. 

A distinctive property of the architecture is that cache 
transfers are explicitly managed by the application using DMA. 
This is unlike other architectures, where caches work trans-
parently. Communication can be overlapped with computa-
tion, by using multiple buffers. Although issuing explicit DMA 
commands complicates programming, we found that this usu-
ally is not problematic for signal-processing applications. 
Thanks to the explicit cache, the correlator implementation 
fetches each sample from main memory only exactly once. 
The large number of registers allows a big tile size of 4 3 3, 
leading to a lot of data reuse. We exploit the vector parallelism 
of the Cell/BE by computing the four polarization combina-
tions in parallel. We found that this performs better than vec-
torizing over the integration time. This is thanks to the Cell/
BE’s excellent support for shuffling data around in the vector 
registers. Due to the high memory bandwidth and the ability 
to reuse data, we achieve 92% of the peak performance on one 
chip. If we use both chips in a cell blade, we still achieve 91%. 
Even though the memory bandwidth per operation of the Cell/
BE is eight times lower than that of the BG/P, we still achieve 
excellent performance, thanks to the high-data reuse factor. 

COMPARISON AND EVALUATION
Figure 5 shows the performance on all architectures we evaluat-
ed. The NVIDIA GPU achieves the highest absolute performance. 
Nevertheless, the GPU efficiencies are much lower than on the 
other platforms. The Cell/BE achieves the highest efficiency of all 
many-core architectures, close to that of the BG/P. Although the 
theoretical peak performance of the Cell/BE is 4.6 times lower 
than the NVIDIA chip, the absolute performance is only 1.6 times 

lower. If both chips in the cell blade are used, the Cell/BE also has 
the highest absolute performance. For the GPUs, it is possible to 
use more than one chip as well, for instance with the ATI 4870x2 
device. However, we found that this does not help, since the per-
formance is already limited by the low PCI-e throughput, and the 
chips have to share this resource. In Table 3 we summarize the 
architectural strengths and weaknesses that we discussed. 

PROGRAMMABILITY OF THE PLATFORMS
The performance gap between assembly and a high-level pro-
gramming language is quite different for the different platforms. 
It also depends on how much the compiler is helped by manual-
ly unrolling loops, eliminating common subexpressions, and the 
use of register variables up to a level that the C code becomes 
almost as low level as assembly code. The difference varies 
between only a few percent to a factor of ten. 

For the BG/P, the performance from compiled C++ code 
was by far not sufficient. The assembly code is approximately 
ten times faster. For both the Cell/BE and the Intel Core i7, we 
found that high-level code in C or C11 in combination with 
the use of intrinsics to manually describe the SIMD parallelism 
yields acceptable performance compared to optimized assem-
bly code. Thus, the programmer specifies which instructions 
have to be used, but can typically leave the instruction sched-
uling and register allocation to the compiler. On NVIDIA hard-
ware, the high-level CUDA model delivers excellent 
performance, as long as the programmer helps by using SIMD 
data types for loads and stores, and separate local variables for 
values that should be kept in registers. With ATI hardware, this 
is different. We found that the high-level Brook+ model does 
not achieve acceptable performance compared to hand-written 
CAL code. Manually written assembly is more than three times 
faster. Also, the Brook+ documentation is insufficient. 

CONCLUSIONS
Radio telescopes require large amounts of signal processing 
and have high computational and I/O demands. We presented 
general insights on how to use many-core platforms for signal-
processing applications, looking at the aspects of performance, 
optimization, and programmability. As an example, we evalu-
ated the extremely data-intensive correlator algorithm on 
today’s many-core architectures. 

The many-core architectures have a significantly lower memo-
ry bandwidth per operation compared to traditional architectures. 

[TABLE 3] STRENGTHS AND WEAKNESSES OF THE DIFFERENT PLATFORMS FOR SIGNAL-PROCESSING APPLICATIONS.

INTEL CORE i7 920 IBM BG/P ATI 4870 NVIDIA TESLA C1060 STI CELL/BE 
1 WELL KNOWN 1 L2 PREFETCH UNIT 1 LARGEST NUMBER OF CORES 1 RANDOM WRITE ACCESS 1 POWER EFFICIENCY 
2 FEW REGISTERS 1 HIGH MEMORY BANDWIDTH 1 SWIZZLING SUPPORT 1 CUDA IS HIGH LEVEL 1 RANDOM WRITE ACCESS 
2 NO FMA INSTRUCTION 1 FAST INTERCONNECTS 2 LOW PCI-e BANDWIDTH 2 LOW PCI-e BANDWIDTH 1 SHUFFLE CAPABILITIES 
2 LIMITED SHUFFLING 2 DOUBLE PRECISION ONLY 

2 EXPENSIVE
2 TRANSFER SLOWS DOWN 

KERNEL
1 EXPLICIT CACHE 

(PERFORMANCE)
2 NO RANDOM WRITE ACCESS
2 BAD PROGRAMMING SUPPORT 

2 EXPLICIT CACHE 
(PROGRAMMABILITY)

2 MULTIPLE PARALLELISM 
LEVELS
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This requires completely different algorithm implementation and 
optimization strategies: minimizing the number of memory loads 
per operation is of key importance to obtain good performance. A 
high memory bandwidth per operation is not strictly necessary, as 
long as the architecture (and the algorithm) allows efficient data 
reuse. This can be achieved through caches, shared memory, LSs, 
and registers. It is clear that application-level control of cache 
behavior (either through explicit DMA or thread synchronization) 
has a substantial performance benefit, and is of key importance for 
signal-processing applications. 

We demonstrated that the many-core architectures have 
very different performance characteristics, and require differ-
ent implementation and optimization strategies. The BG/P 
supercomputer achieves high efficiencies thanks to the high 
memory bandwidth per operation. The GPUs are unbalanced: 
they provide an enormous computational power but have a 
relatively low bandwidth per operation, both internally and 
externally (between the host and the device). Because of this, 
many data-intensive signal-processing applications will achieve 
only a small fraction of the theoretical peak. The Cell/BE per-
forms excellently on signal-processing applications, even 
though its memory bandwidth per operation is eight times 
lower than the BG/P. Applications can exploit the application-
managed cache and the large number of registers. For the cor-
relator, this results in optimal reuse of all sample data. 
Nevertheless, it is clear that, for signal-processing applica-
tions, the recent trend of increasing the number of cores will 
not work indefinitely if I/O is not scaled accordingly. 
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The Curvelet Transform

[Jianwei Ma and Gerlind Plonka]

©DIGITAL VISION

M
ultiresolution methods are 
deeply related to image pro-
cessing, biological and com-
puter vision, and  scientific 
computing. The curvelet trans-

form is a multiscale directional transform that 
allows an almost optimal nonadaptive sparse rep-
resentation of objects with edges. It has generated 
increasing interest in the community of applied 
mathematics and signal processing over the 
years. In this article, we present a review on the 
curvelet transform, including its history begin-
ning from wavelets, its logical relationship to 
other multiresolution multidirectional methods 
like contourlets and shearlets, its basic theory and 
discrete algorithm. Further, we consider recent 
applications in image/video processing, seismic 
exploration, fluid mechanics, simulation of partial 
different equations, and compressed sensing.

INTRODUCTION
Most natural images/signals exhibit line-like 
edges, i.e., discontinuities across curves (so-called 
line or curve singularities). Although applications 
of wavelets have become increasingly popular in 
scientific and engineering fields, traditional wave-
lets perform well only at representing point sin-
gularities since they ignore the geometric 
properties of structures and do not exploit the 
regularity of edges. Therefore, wavelet-based com-
pression, denoising, or structure extraction 
become computationally inefficient for geometric 
features with line and surface singularities. In 
fluid mechanics, discrete wavelet thresholding 
often leads to oscillations along edges of the 
coherent eddies and, consequently, to the deterio-
ration of the vortex tube structures, which in turn 

 Digital Object Identifier 10.1109/MSP.2009.935453

[A review of recent applications]
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can cause an unphysical leak of energy into neighboring scales 
producing an artificial  “cascade” of energy. 

Multiscale methods are also deeply related with biological and 
computer vision. Since Olshausen and Field’s work in Nature [55], 
researchers in biological vision have re iterated the similarity 
between vision and multiscale image processing. It has been rec-
ognized that the receptive fields of simple cells in a mammalian 
primary visual cortex can be characterized as being spatially local-
ized, oriented, and bandpass (selective to structure at different spa-
tial scales). However, wavelets do not supply a good direction 
selectivity, which is also an important response property of simple 
cells and neurons at stages of the visual pathway. Therefore, a 
directional multiscale sparse coding is desirable in this field. 

One of the primary tasks in computer vision is to extract fea-
tures from an image or a sequence of images. The features can be 
points, lines, edges, and textures. A given feature is characterized 
by position, direction, scale, and other property parameters. The 
most common technique, used in early vision for extraction of such 
features, is linear filtering, which is also reflected in models used in 
biological visual systems, i.e., human visual motion sensing. Objects 
at different scales can arise from distinct physical processes. This 
leads to the use of scale-space filtering and multiresolution wavelet 
transform in this field. An important motivation for computer 
vision is to obtain directional representations that capture aniso-
tropic lines and edges while providing sparse decompositions. 

To overcome the missing directional selectivity of conventional 
two-dimensional (2-D) discrete wavelet transforms (DWTs), a mul-
tiresolution geometric analysis (MGA), named curvelet transform, 
was proposed [7]–[12]. In the 2-D case, the curvelet transform 
allows an almost optimal sparse representation of objects with sin-
gularities along smooth curves. For a smooth object f  with discon-
tinuities along C2-continuous curves, the best N -term 
approximation f

|
N that is a linear combination of only N  elements 

of the curvelet frame obeys 7 f 2 f|N 7 22 # CN22 1 log N 2 3, while for 
wavelets the decay rate is only N21. Combined with other meth-
ods, excellent performance of the curvelet transform has been 
shown in image processing; see e.g., [49], [45], [60], and [61]. 
Unlike the isotropic elements of wavelets, 
the needle-shaped elements of the curvelet 
transform possess very high directional sen-
sitivity and anisotropy (see Figure 1 for the 
2-D case). Such elements are very efficient 
in representing line-like edges. Recently, 
the curvelet transform has been extended to 
three dimensions by Ying et al. [7], [68]. 

Let us roughly compare the curvelet 
system with the conventional Fourier and 
wavelet analysis. The short-time Fourier 
transform uses a shape-fixed rectangle in 
frequency domain, and conventional wave-
lets use shape-changing (dilated) but area-
fixed windows. By contrast, the curvelet 
transform uses angled polar wedges or 
angled trapezoid windows in frequency 
domain to resolve directional features. 

The theoretic concept of curvelets is easy to understand, but 
how to achieve the discrete algorithms for practical applications is 
challenging. In this article, we first address a brief history of curve-
lets starting from classical wavelets. We also mention some other 
wavelet-like constructions that aim to improve the representation 
of oriented features towards visual reception and image process-
ing. Then we shall derive the discrete curvelet frame and the cor-
responding fast algorithm for the discrete curvelet transform in 
the 2-D case. Finally, we show some recent applications of the dis-
crete curvelet transform in image and seismic processing, fluid 
mechanics, numerical treatment of partial differential equations, 
and compressed sensing. 

FROM CLASSICAL WAVELETS TO CURVELETS
As outlined in the introduction, although the DWTs has established 
an impressive reputation as a tool for mathematical analysis and 
signal processing, it has the disadvantage of poor directionality, 
which has undermined its usage in many applications. Significant 
progress in the development of directional wavelets has been made 
in recent years. The complex wavelet transform is one way to 
improve directional selectivity. However, the complex wavelet trans-
form has not been widely used in the past, since it is difficult to 
design complex wavelets with perfect reconstruction properties and 
good filter characteristics [29], [53]. One popular technique is the 
dual-tree complex wavelet transform (DT CWT) proposed by 
Kingsbury [37], [38], which added (almost) perfect reconstruction 
to the other attractive properties of complex wavelets, including 
approximate shift invariance, six directional selectivities, limited 
redundancy and efficient O 1N 2  computation. 

The 2-D complex wavelets are essentially constructed by using 
tensor-product one-dimensional (1-D) wavelets. The directional 
selectivity provided by complex wavelets (six directions) is much 
better than that obtained by the classical DWTs (three directions), 
but is still limited. 

In 1999, an anisotropic geometric wavelet transform, named 
ridgelet transform, was proposed by Candès and Donoho [4], [8]. 
The ridgelet transform is optimal at representing straight-line 
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[FIG1] The elements of (a) wavelets and (b) curvelets on various scales, directions, and 
translations in the spatial domain. Note that the tensor-product 2-D wavelets are not 
strictly isotropic but prefer axes directions.
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 singularities. Unfortunately, global straight-line singularities are 
rarely observed in real applications. To analyze local line or curve 
singularities, a natural idea is to consider a partition of the image, 
and then to apply the ridgelet transform to the obtained sub-
images. This block ridgelet-based transform, which is named 
curvelet transform, was first proposed by Candès and Donoho in 
2000, see [9]. Apart from the blocking effects, how ever, the appli-
cation of this so-called first-generation curvelet transform is limit-
ed because the geometry of ridgelets is itself unclear, as they are 
not true ridge functions in digital images. Later, a considerably 
simpler second-generation curvelet transform based on a frequen-
cy partition technique was proposed by the same authors; see 
[10]–[12]. Recently, a variant of the second-generation curvelet 
transform was proposed to handle image boundaries by mirror 
extension (ME) [19]. Previous versions of the transform treated 
image boundaries by periodization. Here, the main modifications 
are to tile the discrete cosine domain instead of the discrete 
Fourier domain and to adequately reorganize the data. The 
obtained algorithm has the same computational complexity as the 
standard curvelet transform. 

The second-generation curvelet transform [10]–[12] has been 
shown to be a very efficient tool for many different applications in 
image processing, seismic data exploration, fluid mechanics, and 
solving partial different equations (PDEs). In this survey, we will 
focus on this successful approach and show its theoretical and 
numerical aspects as well as the different applications of curvelets. 
From the mathematical point of view, the strength of the curvelet 
approach is their ability to formulate strong theorems in approxi-
mation and operator theory. The discrete curvelet transform is very 
efficient in representing curve-like edges. But the current curvelet 
systems still have two main drawbacks: 1) they are not optimal for 
sparse approximation of curve features beyond C2-singularities, 
and 2) the discrete curvelet transform is highly redundant. The 
currently available implementations of the discrete curvelet trans-
form (see www.curvelet.org) aim to reduce the redundancy 
 smartly. However, independently from the good theoretical results 
on N -term approximation by curvelets, the discrete curvelet trans-
form is not appropriate for image compression. The question of 
how to construct an orthogonal curvelet-like transform is still open. 

RELATIONSHIP OF CURVELETS 
TO OTHER DIRECTIONAL WAVELETS
There have been several other developments of directional wavelet 
systems in recent years with the same goal, namely a better analy-
sis and an optimal representation of directional features of signals 
in higher dimensions. None of these approaches has reached the 
same publicity as the curvelet transform. However, we want to 
mention shortly some of these developments and also describe 
their relationship to curvelets. 

Steerable wavelets [28], [59], Gabor wavelets [40], wedgelets 
[23], beamlets [24], bandlets [51], [54], contourlets [21], shear-
lets [39], [31], wave atoms [20], platelets [67], and surfacelets [42] 
have been proposed independently to identify and restore geomet-
ric features. These geometric wavelets or directional wavelets are 
uniformly called X-lets. 

The steerable wavelets [28], [59] and Gabor wavelets [40] can 
be seen as early directional wavelets. The steerable wavelets were 
built based on directional derivative operators (i.e., the second 
derivative of a Gaussian), while the Gabor wavelets were produced 
by a Gabor kernel that is a product of an elliptical Gaussian and a 
complex plane wave. In comparison to separable orthonormal 
wavelets, the steerable wavelets provide translation-invariant and 
rotation-invariant representations of the position and the orienta-
tion of considered image structures. This feature is paid by high 
redundancy. Applications of Gabor wavelets focused on image clas-
sification and texture analysis. Gabor wavelets have also been used 
for modeling the receptive field profiles of cortical simple cells. 
Applications of Gabor wavelets suggested that the precision in res-
olution achieved through redundancy may be a relevant issue in 
brain modeling, and that orientation plays a key role in the prima-
ry visual cortex. The main differences between steerable wavelets/
Gabor wavelets and other X-lets is that the early methods do not 
allow for a different number of directions at each scale. 

Contourlets, as proposed by Do and Vetterli [21], form a discrete 
filter bank structure that can deal effectively with piecewise smooth 
images with smooth contours. This discrete transform can be con-
nected to curvelet-like structures in the continuous domain. Hence, 
the contourlet transform [21] can be seen as a discrete form of a 
particular curvelet transform. Curvelet constructions require a 
rotation operation and correspond to a partition of the 2-D fre-
quency plane based on polar coordinates; see the section “The 
Discrete Curvelet Frame.” This property makes the curvelet idea 
simple in the continuous case but causes problems in the imple-
mentation for discrete images. In particular, approaching critical 
sampling seems difficult in discretized constructions of curvelets. 
For contourlets, critically sampling is easy to implement. There 
exists an orthogonal version of the contourlet transform that is fast-
er than current discrete curvelet algorithms [7]. The directional fil-
ter bank, as a key component of contourlets, has a convenient 
tree-structure, where aliasing is allowed to exist and will be can-
celed by carefully designed filters. Thus, the key difference between 
contourlets and curvelets is that the contourlet transform is directly 
defined on digital-friendly discrete rectangular grids. Unfortunately, 
contourlet functions have less clear directional geometry/features 
than curvelets (i.e., more oscillations along the needle-like ele-
ments) leading to artifacts in denoising and compression. 

Surfacelets [42] are 3-D extensions of the 2-D contourlets 
that are obtained by a higher-dimensional directional filter 
bank and a multiscale pyramid. They can be used to efficiently 
capture and represent surface-like singularities in multidimen-
sional volumetric data involving biomedical imaging, seismic 
imaging, video processing and computer vision. Surfacelets and 
the 3-D curvelets (see the section “Three-Dimensional Curvelet 
Transform”) aim at the same frequency partitioning, but the 
two transforms achieve this goal with different approaches as 
we described above in the 2-D case. The surfacelet transform is 
less redundant than the 3-D curvelet transform, and this advan-
tage is payed by a certain loss of directional features. 

Unlike curvelets, the shearlets [39], [31] form an affine system 
with a single generating mother shearlet function parameterized 
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by a scaling, a shear, and a translation parameter, where the shear 
parameter captures the direction of singularities. It has been 
shown that both the curvelet and shearlet transforms are (at least 
theoretically) similarly well suited for approximation of piece-wise 
smooth images with singularities along smooth curves [12], [31]. 
Indeed, using the fast curvelet transform based on transition to 
Cartesian arrays, described in the section “Transition to Cartesian 
Arrays,” the discrete implementations of the two transforms are 
very similar [7]. 

The bandlet transform [51], [54] is, in contrast with the previ-
ously mentioned transforms, based on adaptive techniques and 
has a good performance for images with textures beyond C2-sin-
gularities, but it has to pay much higher computational cost for 
its adaptation. 

In this article, we are not able to give a more detailed overview 
on all these approaches and refer to the given references for fur-
ther information. 

THE DISCRETE CURVELET FRAME
In this section, we want to consider the construction of a discrete 
curvelet frame. Recalling the structure of 1-D wavelets being well 
localized in frequency domain, we consider the question how these 
ideas can suitably be transferred to construct a curvelet frame that 
is an (almost) rotation-invariant function frame in two dimen-
sions. Finally, we summarize the properties of the obtained curve-
let elements. 

WHAT CAN BE LEARNED FROM THE 
1-D WAVELET TRANSFORM?
Using the 1-D dyadic wavelet transform in signal analysis, one 
considers a family of dilated and translated functions 
5cj,k J 2j/2c 12j # 2k 2  :  j, k [ Z6,  generated by one mother 
wavelet c [ L2 1R 2 , and being an orthonormal basis of L2 1R 2 . 
Then, each signal f [ L2 1R 2  can be uniquely represented in a 
wavelet expansion 

 f 5 a
j, k

cj, k 1 f 2  cj, k, 

where cj, k 1 f 2 : 5 8f, cj, k9 are the wavelet coefficients. Here 8 # , # 9  
denotes the scalar product in L2 1R 2 . Observe that the Fourier 
transformed elements of the wavelet basis have the form 

ĉj, k 1j 2 5 22j/2 e2i22 jjk ĉ 122jj 2 , 
i.e., dilation by 2 j in space domain corresponds to dilation by 
22j in frequency domain, and the translation corresponds to a 
phase shift. 

For a good frequency localization of the wavelet basis, the 
main idea is to construct a wavelet basis that provides a partition 
of the frequency axis into (almost) disjoint frequency bands (or 
octaves). Such a partition can be ensured if the Fourier transform 
of the dyadic wavelet ĉ has a localized or even compact support 
and satisfies the admissibility condition 

 a
`

j52`

|ĉ 122jj 2 |2 5 1,   j [ R a.e.. (1)

This admissibility condition also ensures the typical wavelet 
property ĉ 10 2 5 e`

2`
c 1x 2  dx 5 0.

A particularly good frequency localization is obtained, if ĉ is 
compactly supported in 322, 2 1/2 4h 31/2, 2 4. Such a construc-
tion has been used for Meyer wavelets (see Figure 2). Obviously, 
the dilated Meyer wavelets ĉ 122jj 2  generate a tiling of the fre-
quency axis into frequency bands, where ĉ 122jj 2  has its support 
inside the intervals 322j11, 22j21 4h 32j21, 2j11 4. In this case, 
for a fixed j [ R, at most two wavelet functions in the sum (1) 
overlap. We remark that the condition (1) implies even more! It 
ensures that the function family 5cj, k  :  j, k [ Z6  forms a tight 
frame of L2 1R 2 (see e.g., [50, Theorem 5.1]). 

Finally, a localization property of the dyadic wavelet trans-
form in space domain is guaranteed if also c is localized, i.e., if 
ĉ is smooth. 

HOW TO TRANSFER THIS IDEA TO THE 
CURVELET CONSTRUCTION
We wish to transfer this construction principle to the 2-D case for 
image analysis and incorporate a certain rotation invariance. So, 
we wish to construct a frame, generated again by one basic ele-
ment, a basic curvelet f, this time using translations, dilations, 
and rotations of f. Following the considerations in the 1-D case, 
the elements of the curvelet family should now provide a tiling of 
the 2-D frequency space. Therefore the curvelet construction is 
now based on the following two main ideas [11]. 

Consider polar coordinates in frequency domain. 1) 
Construct curvelet elements being locally supported near 2) 

wedges according to Figure 3, where the number of wedges is 
Nj 5 4 # 2< j/2= at the scale 22j, i.e., it doubles in each second 
circular ring. (Here <x=  denotes the smallest integer being 
greater than or equal to x.)
Let now j 5 1j1, j2 2T be the variable in frequency domain. 

Further, let r 5"j1
2 1 j2

2, v 5 arctan j1/j2 be the polar coordi-
nates in frequency domain. For the “dilated basic curvelets” in 
polar coordinates we use the ansatz 

f̂ j, 0, 0 1r, v2 :5 223j/4 W 122jr 2  V|Nj
1v 2 ,   r $ 0, v [ 30, 2p 2, j [ N0,  

 (2)
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[FIG2] Plot of a Meyer wavelet ĉ 1j 2  in frequency domain.
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[FIG4] Basic curvelet f̂0,0,0 in the (a) frequency domain and (b) its support.
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where we use suitable window functions W  and V|Nj
, and where a 

rotation of f̂ j, 0, 0 corresponds to the translation of a 2p-periodic 
window function V

|
Nj

. The index Nj indicates the number of wedges 
in the circular ring at scale 22j (see Figure 3). To construct a (dilat-
ed) basic curvelet with compact support near a “basic wedge” (see 
e.g., the gray wedge in Figure 3 for j 5 0), the two windows W  and 
V
|

Nj
 need to have compact support. The idea is to take W 1r 2  sim-

ilarly as in the 1-D case, to cover the interval 10, ` 2  with dilated 
curvelets, and to take V

|
Nj

 such that a covering in each circular 
ring is ensured by translations of V

|
Nj

. Here, we have r [ 30, ` 2 , 
therefore we cannot take the complete Meyer wavelet to deter-
mine W, but only the part that is supported in 31/2, 2 4  (see 
Figure 2). Then the admissibility condition (1) yields 

 a
`

j52`

|W 122jr 2 |2 5 1 (3)

for r [ 10, ` 2 . For an explicit construction of W , see “Window 
Functions.” 

Further, for the tiling of a circular ring into N  wedges, 
where N  is an arbitrary positive integer, we need a 2p-periodic 
nonnegative window V

|
N  with support inside 322p/N, 2p/N 4  

such that 

a
N21

l50
V|N

2 av 2
2pl
N
b 5 1   for all v [ 30, 2p 2

is satisfied. Then only two “neighbored” translates of V
|

N
2  in the 

sum overlap. Such windows V
|

N  can be simply constructed as 
2p-periodizations of a scaled window V 1Nv /2p 2 , where V  is 
given in “Window Functions.” 

In this way we approach the goal to get a set of curvelet 
functions with compact support in frequency domain on wedg-
es, where in the circular ring that corresponds to the scale 22j 
the sum of the squared rotated curvelet functions depends only 
on W 122jr 2 , i.e., it follows that 

 a
Nj21

l50
` 23j/4 f̂j, 0, 0ar, v 2

2pl
Nj
b ` 2 5 |W 122jr 2 |2 a

Nj21

l50
V|Nj

2 av 2
2pl
Nj
b

 5 |W 122jr 2 |2. (4)

Together with (3), that means that using the rotations of 
the dilated basic curvelets f̂j, 0, 0, we are able to guarantee an 
admissibility condition similar to (1) for the 1-D wavelet frame. 
Remember that the translates of fj, 0, 0 have no influence here, 
since translates in space domain correspond to phase shifts in 
frequency domain that do not change the support of the 
Fourier transformed curvelets. The basic curvelet f̂ j, 0, 0, 0 is 
illustrated in Figure 4. 

There is a last point we have to attend to, namely the “hole” 
that arises in the frequency plane around zero, since the rota-
tions of the dilated basic curvelets work only in the scales 22j 
for j 5 0, 1, 2, c. Taking now all scaled and rotated curvelet 
elements together with Nj J 4 # 2<j/2= we find for the scales 22j, 
j 5 0, 1, c with (3) and (4) 

 a
`

j50
a

Nj21

l50
`23j/4 f̂j,0,0ar, v 2

2pl
Nj
b ` 2 5 a

`

j50
|W 122jr 2 |2, 

and this sum is only for r . 1 equal to one. For a complete 
covering of the frequency plane, we therefore need to define a 
low-pass element 

[FIG3] Tiling of the frequency domain into wedges for 
curvelet construction.

(a)
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  f̂21 1j 2 J W0 1 |j| 2  with  W0
2 1r 2 2 J 1 2 a

`

j50
W 122jr 2 2 (5)

that is supported on the unit circle, and where we do not con-
sider any rotation. 

HOW MANY WEDGES SHOULD 
BE TAKEN IN ONE CIRCULAR RING?
As we have seen already in Figure 3 and postulated in the last 
subsection, for the curvelet construction, there are Nj 5 4 # 2<j/2= 
angles (or wedges) chosen in the circular ring (with radius 
2 j21/2 # r # 2 j11/2) corresponding to the 22jth scale, see [11]. 
But looking at the above idea to ensure the admissibility condi-
tion for a tight frame, one is almost free to choose the number 
of wedges/angles in each scale. Principally, the construction 
works for all ratios of angles and scales. In fact this is an impor-
tant point, where curvelets differ from other constructions. 

If we take the number of wedges in a fixed way, independent 1) 
of the scale, we essentially obtain steerable wavelets. 

If the number of wedges increases like 2) 1/scale (i.e., like 2j), 
then we obtain tight frames of ridgelets. 

If the number of wedges increases like 3) "1/scale (i.e., like 
2j/2), the curvelet frame is obtained. This special anisotropic 
scaling law yields the typical curvelet elements whose proper-
ties are considered next.

WHAT PROPERTIES DO THE CURVELET 
ELEMENTS HAVE?
To obtain the complete curvelet family, we need to consider the 
rotations and the translations of the dilated basic curvelets fj,0,0. 
We choose 

an equidistant sequence of rotation angles  ■ uj, l, 

 uj, l: 5
pl 22 <j/2=

2
  with l 5 0, 1, c, Nj 2 1

the positions  ■ bk
j, l

5 bk1,k2

j, l J Ruj, l

21 11k1/2j 2 1k2/2j/2 22T  with 
k1, k2 [ Z, and where Ru denotes the rotation matrix with 
angle u. 

WINDOW FUNCTIONS
For constructing the curvelet functions we shall use the fol-
lowing special window functions. Let us consider the scaled 
Meyer windows (see [18,  p. 137]) 

V 1v 2 5 •
1 0v 0 # 1/3,

cos 3p2 n 13 0v 0 2 14 1/3 # 0v 0 # 2/3,
0 else,

 W 1r 2 5 μ
cos 3p2n 15 2 6r 2 4 2/3 # r # 5/6,

1 5/6 # r # 4/3,
cos 3p2n 13r 2 4 2 4 4/3 # r # 5/3,

0 else,

where n is a smooth function satisfying 

n 1x 2 5 e0 x # 0, 
1 x $ 1, 

  n 1x 2 1 n 11 2 x 2 5 1,  x [ R.

For the simple case n 1x 2 5 x  in 30, 1 4, the window functions 
V 1v 2  and W 1r 2  are plotted in Figure S1. To obtain smoother 
functions W and V, we need to take smoother functions n. 
We  m a y  u s e  t h e  p o l y n o m i a l s  n 1x 2 5 3x2 2 2x3  o r 
n 1x 2 5 5x3 2 5x4 1 x5 in 30, 1 4, such that n is in C1 1R 2  or in C2 1R 2 . 
An example of an arbitrarily smooth window n is given by 

 n 1x 2 5 μ
0 x # 0,

s 1x21 2
s 1x21 21 s 1x 2 0 , x , 1,

1 x $ 1

 
with s 1x 2 5 e2a 1

11 1 x 22 1
1

11 2 x 22b.

The above two functions V 1t 2  and W 1r 2  satisfy the conditions 

 a
`

l52`

V2 1v 2 l 2 5 1,  t [ R,  (S1)

 a
`

j52`

W2 12jr 2 5 1,  r . 0. (S2)

In particular, the 2p periodic window functions V|N 1v 2  need-
ed for curvelet construction, can now be obtained as 
2p-periodization of V 1Nv/2p 2 .
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[[FIGS1] Plot of the (a) windows V 1v 2  and (b) W 1r 2 .
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Then the family of curvelet functions is given by 

 fj,k,l 1x 2 J fj,0,0 1Ruj,l
1x 2 bk

j,l 2 2  (6)

with indices j [ N0 and k 5 1k1, k2 2 , l as above. 
One should note that the positions bk

j, l are on different regular 
grids for each different rotation angle, and these grids have differ-
ent spacing in the two directions being consistent with the para-
bolic scaling (i.e., with the ratio of angles and scales). This choice 
will lead to a discrete curvelet system that forms a tight frame, i.e., 
every function f [ L2 1R 2  will be representable by a curvelet 
series, and hence the discrete curvelet transform will be invertible. 

For example, for j 5 0 we consider the angles u0, l 5 pl/2, 
l 5 0, 1, 2, 3 and the positions 5bk

0, l6k[Z2, l50,1,2,3 5 Z2. For j 5 4, 
the angles u4, l 5 pl/8, l 5 0, c, 15 occur, and, depending on 
the angles u4, l, eight different grids for translation are considered, 
where rectangles of size 1/16 3 1/4 are rotated by u4, l, 
l 5 0, c, 7, see Figure 5. In particular, the choice of positions 
yields a parabolic scaling of the grids with the relationship length 
< 22j/2 and width < 22j. 

The underlying idea for the choice of the translation grids is as 
follows. Considering a band-limited function f, where f̂  has its 
support on a single wedge (e.g., in the scale 22j; see Figure 6), one 

can determine a rotation angle and a translation to map this 
wedge into the center of the frequency plane, then find a rectangle 
of size 2 j 3 2 j/2 to cover the wedge, and finally use the Shannon 
sampling theorem to fix the needed sampling rate for covering f. 
All sampling rates that are obtained in this way have to be taken, 
and thus one finds the needed positions as above. 

SUPPORT IN FREQUENCY DOMAIN 
In frequency domain, the curvelet function f̂j,k,l is supported 
inside the polar wedge with radius 2j21 # r # 2j11 and angle 
22 < j/2=p 1212l 2 /2 , v , 22 < j/2=p 11 2 l 2 /2.  The support of 
f̂j,k, l  does not depend on the position bk

j,l.  For example, 
f̂2,k, l 1r, v 2  is supported inside the wedge with 2 # r # 8 and 
1212l 2p/4 # v # 11 2 l 2p/4,  l 5 0, c, 7;  see Figure 6. 
(Here we have used supp V

|
Nj
( 322p/Nj, 2p/Nj 4  and supp 

W ( 31/2, 2 4.)
SUPPORT IN TIME DOMAIN 
AND OSCILLATION PROPERTIES
In time domain, things are more involved. Since f̂j,k,l has compact 
support, the curvelet function fj,k,l cannot have compact support 
in time domain. From Fourier analysis, one knows that the decay 
of fj,k,l 1x 2  for large |x| depends on the smoothness of f̂j,k,l in fre-
quency domain. The smoother f̂j,k, l, the faster the decay. 

By definition, f̂j,0,0 1j 2 , j [ N0, is supported away from the 
vertical axis j1 5 0 but near the horizontal axis j2 5 0; see Figure 6. 
Hence, for large j [ N0 the function fj,0,0 1x 2  is less oscillatory in 
x2-direction (with frequency about 22j/2) and very oscillatory in 
x1-direction (containing frequencies of about 2j21). The essential 
support of the amplitude  spectrum of fj,0,0 is a rectangle of size 
32p2j21, p2j21 4 3 32p2j/2, p2j/2 4, and the decay of fj,0,0 away 
from this rectangle essentially depends on the smoothness of f̂ 
respectively, the windows V  and W. From (6), we simply observe 
that the essential support of fj,k, l is the rectangle rotated by the 
angle uj,l and translated by Ruj, l

bk
j,l. 

Remark 
The concept “essential support” of a function f  with good decay 
properties is used in literature without rigorous definition but 
with the following intuitive meaning: the essential support is a 
finite region that contains the most important features of the 
function. Outside this support, the graph of f  consists mainly of 
asymptotic tails that can be neglected in certain considerations. 

TIGHT FRAME PROPERTY 
The system of curvelets 

5f21,k,0  :  k [ Z26h5fj,k,l  :  j [ N0, 
  l 5 0, c, 4 # 2 < j/2= 2 1, k 5 1k1, k2 2T [ Z26

satisfies a tight frame property. That means, every function 
f [ L2 1R2 2  can be represented as a curvelet series 

 f 5 a
j,k,l
8 f, fj,k, l9 fj,k, l,  (7)

and the Parseval identity 

[FIG6] Maximal supports of f̂2,k,0 and f̂2,k,5 (dark grey); of 
f̂3,k,3 f̂3,k,6 and f̂3,k,13 (light grey); and of f̂4,k,0 and f̂4,k,11 (grey). 
The translation index k [ Z2 does not influence the support of 
the curvelet elements.

32

16
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32−16 −4
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[FIG5] Grid for u4,0 5 0 and for u4,1 5 p/8.
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[FIG8] (a) Basic curvelet f|̂0,0,0 and (b) its support adapted to the Cartesian arrays in frequency domain.
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a
j,k, l

|8f, fj,k, l9|2 5 7 f 7L2 1R222 ,  4f [ L2 1R2 2
holds. For a proof, we refer to [11]. The terms cj,k, l 1 f 2 J 8f, fj,k, l9  
are called curvelet coefficients. In particular, we obtain by 
Plancherel’s Theorem for j $ 0 

cj, k, l 1 f 2 J 3
R2

f 1x 2  fj,k, l 1x 2  dx 5 3
R2

f̂ 1j 2  f̂j,k, l 1j 2  dj

 5 3
R2

f̂ 1j 2  f̂j,0,0 1Ruj,l
j 2  ei8 bk

j, l, j 9 dj. (8)

THE FAST CURVELET TRANSFORM

TRANSITION TO CARTESIAN ARRAYS
In practical implementations, one would like to have Cartesian 
arrays instead of the polar tiling of the frequency plane. Cartesian 
coronae are based on concentric squares (instead of circles) and 
shears (see Figure 7). Therefore, a construction of window func-
tions on trapezoids instead of polar wedges is desirable. Hence, we 
need to adapt the discrete curvelet system as given in the section 
“What Properties Do the Curvelet Elements Have?” suitably. Let us 
remark that the frequency tiling into shears, as given in Figure 7, 
has been similarly used for the construction of contourlets [21] by 
a pyramidal directional filter bank. However, the tiling for the con-
tourlet transform is slightly more flexible by allowing that the 
number of directions need not to be doubled at each second scale, 
see [21]. 

For the transition of the basic curvelet according to the new 
tiling, where rotation is replaced by shearing, we use the ansatz 

f|̂j,0,0 1j 2 J 223j/4W 122j
j1 2  Va2: j/2;j2

j1
b 

with the window function W  as in the section “How to Transfer 
This Idea to the Curvelet Construction” and with a nonnegative 
window V  with compact support in 322/3, 2/3 4; see “Window 
Functions.” This adapted scaled basic curvelet f|̂ j,0,0

 
 in Figure 8 is 

the Cartesian equivalent to f̂j, 0, 0 in (2) (see Figure 4). 

Observe that the support of Vj 1j 2 J V 12:j/2; j2/j1 2  is now 
inside the cone K1 J 5 1j1, j2 2 : j1 . 0, j2 [ 3 2 2j1/3, 2j1/3 4 6 . 
Hence the adapted basic curvelet f|̂ j,0,0

 
 determines the frequencies 

in the trapezoid 

e 1j1,j2 2 : 2j21 # j1 # 2j11, 2 22 :j/2; # 2
3

# j2/j1 # 22 :j/2; # 2
3
f .

To replace rotation of curvelet elements by shearing in the 
new grid, we need to consider the eastern, western, northern, 
and southern cone separately (see Figure 9 for the eastern 
cone). Let us only consider the shearing in the eastern cone 
K 5 5 1j1, j2 2T: j1 . 0, 2 j1 , j2 # j16, for the other cones, 
suitable curvelet elements are then obtained by rotation by 
6 p/2 radians and reflection. 

Instead of equidistant angles, we define a set of equispaced 
slopes in the eastern cone 

tanuj, l J l 22 :j/2;,   l 5 2 2:j/2; 1 1, c, 2:j/2; 2 1.

Observe that the angles uj, l, which range between 2 p/4 
and p/4, are not equispaced here, while the slopes are. 

Now, let the curvelet-like functions be given by 

 f|j, k, l 1x 2 J f
|

j, 0, 0 1Suj, l

T 1x 2 b
|

k
j, l 2 2 ,  (9)

[FIG7] Discrete curvelet tiling with parabolic pseudopolar 
support in the frequency plane. 
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being the Cartesian counterpart of fj, k, l  in (6), with the 
shear matrix 

Su 5 a 1 0
2 tanu 1

b, 

and where b|k
j,l J Suj, l

2T 1k1 2
2j, k2 2

2 : j/2; 2 5: Suj, l

2T kj  denotes the 
position of f|j,k,l in space domain. Let us have a closer look at 
the functions f| j,k,l . The Fourier transform gives by 
Suj, l

21j 5 1j1, j1 tanuj, l 1 j2 2T  

 f|̂j,k,l 1j 2 5 e2i8|b
k
j, l, j 9f|̂j,0,0 1Suj, l

21 j 2
 5 e2i8|b

k
j, l, j 9 223j/4W 122jj1 2  V 12: j/2;j2/j1 1 l 2 .

Hence, f|̂ j,k,l is compactly supported on sheared trapezoids. 
Let us for example examine f|̂4,k,l. For j 5 4, we consider the 

angles tanu4, l 5 l/4, l 5 2 3, c, 3. The support of f|̂ j,k,0 is 
symmetric with respect to the j1 axis, and for j 5 4 we have 

supp f|̂4, k ,0 5 e 1j1, j2 2T: 8 # j1 # 32, 2
1
6

#
j1

j2
#

1
6
f .

The supports of f|̂4,k,l with l 5 23, c, 3 in the eastern cone 
are now sheared versions of this trapezoid (see Figure 9). 

The set of curvelets f|j,k, l in (9) needs to be completed by sym-
metry and by rotation by 6p/2 radians to obtain the whole family. 
Moreover, as we can also see in Figure 9, we need suitable “corner 
elements” connecting the four cones (north, west, south, and 
east). In [7], it is suggested to take a corner element as the sum of 
two half-part sheared curvelet functions of neighboring cones as 
indicated in Figure 9 (on the left). 

Finally, the coarse curvelet elements for low frequencies are 
needed, and we take here 

f|21,k,0 1x 2 J f|21 1x 2 k 2 ,   k [ Z2, 

where f|̂21 1j 2 J W0 1j1 2W 0 1j2 2  [with W0 in (5)] has its support 
in 3 2 1, 1 42. For this construction of curvelet-like elements one 
can show the frequency tiling property 

f|̂21 1j 2 1 a
`

j50
a
2:j/2;

l522:j/2;
2

3j/4
 f|̂ j,0, l 1j 2 5 1

for all j in the eastern cone K 5 5j 5 1j1, j2 2T:  j1 . 0, j2 
[ 3 2 j1, j1 4 6, where we have taken also the two corner elements 
in the sum. Similarly, this assertion is true for the rotated func-
tions in the other three cones. 

THE ALGORITHM
We find the Cartesian counterpart of the coefficients in (8) by 

c|j,k,l 1 f 2 5 8f, f|j,k,l95 3
R

2 f̂ 1j 2  f|̂j,0,0
1Suj,l

21
j 2  ei8b|k

j,l, j9dj

 5 3
R2 f̂ 1Suj, l

j 2  f|̂j,0,0 1j 2  ei8kj, j9dj (10)

with kj 5 1k12
2j, k22

2 :
 
j/2; 2T, 1k1, k2 2T [ Z2. 

The forward and the inverse fast discrete curvelet trans-
form as presented in [7] have a computational cost of 
O 1N 2log N 2  for an 1N 3 N 2  image, see e.g., CurveLab (http://
curvelab.org) with a collection of MATLAB and C++ programs. 
The redundancy of that curvelet transform implementation is 
about 2.8 when wavelets are chosen at the finest scale, and 7.2 
otherwise (see e.g., [7]);  see the “Forward Algorithm,” which 
uses formula (10).

For the inverse curvelet transform, one applies the algorithm 
in each step in reversed order. Observe that in the second step, a 
suitable approximation scheme has to be applied in the forward 
transform and in the inverse transform. 

THREE-DIMENSIONAL CURVELET TRANSFORM
For three-dimensional (3-D) data, a generalization to 3-D multi-
scale geometric methods is of great interest. So far, only a few 
papers have been concerned with applications of the 3-D 

[FORWARD ALGORITHM] 

1) Compute the Fourier transform of f  by means of a 2-D FFT. 
Let f  be given by its samples f 1 1n1/N 2 , 1n2/N 2 2  n1, n2 5 0, c, N 2 1, where 
N  is of the form N 5 2J, J [ N. Suppose, that f  can be approximated by a 
linear combination of bivariate hat functions. Let s| 1x 2 5 s 1x1 2  s 1x2 2  with 
s 1x1 2 J 11 2 |x1| 2  x321, 14 1x1 2  and 

f 1x 2 5 a
N21

n150
a
N21

n250
f an1

N
, 

n2

N
b s| 1Nx1 2 n1, Nx2 2 n2 2 .

With s|̂ 1j 2 5 1sinc j1/2 22 1sinc j2/2 22 it follows that 

f̂ 1j 2 5 a
N21

n150
a
N21

n250
f an1

N
, 

n2

N
b e2i1n1j11n2j22/N s|̂a j

N
b, 

and the 2-D FFT of length N  gives us the samples f̂ 12pn1, 2pn2 2 , 
n1, n2 5 2 N/2, c, 1N/2 22 1. 

2) Compute f̂ 1Suj, l
j 2  by interpolation. 

Fix the scales to be considered, say j0 # j # J. The support of f|̂j,0,0 is con-
tained in the rectangle Rj 5 32j21, 2j11 4 3 3 2 2:j/2;, 2:j/2; 4. For each pair 1 j, l 2  
compute now f̂ 12pn1, 2pn2 2 2pn1tanuj, l 2  for 2p 1n1, n2 2 [ Rj. 

3) Compute the product f̂ 1Suj, l j 2  f|̂ j,0,01j 2 . 
For each pair 1 j, l 2  compute the product 
f̂ 12pn1, 2pn2 2 2pn1tanuj,I 2  f|̂j,0,0 12pn1, 2pn2 2 . 
4) Apply the inverse 2-D FFT to obtain the discrete coefficients c|j, k, l

D 1 f 2  that 
are an approximation of the coefficients in (10). 

32
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32168−4

−16
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[FIG9] Supports of the functions f|̂4,k,l  for l 523, c, 3, and 
one corner element.  
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 curvelet transform to 3-D turbulence [2], [47] and 3-D seismic 
processing [52]. 

The idea of the 3-D curvelet transform on Cartesian arrays 
can be carried out analogously as done in the section “Transition 
to Cartesian Arrays” for the 2-D case. This time, one considers 
curvelet functions being supported on sheared truncated pyra-
mids instead of sheared trapezoids. The 3-D curvelet functions 
then depend on four indices instead of three; the scale, the posi-
tion and two angles; and for the shearing process, one can intro-
duce 3-D shear matrices. 

A fast algorithm can be derived similarly as in the section 
“The Algorithm” for the 2-D case. The computational complexi-
ty of the 3-D  discrete curvelet transform based on FFT algo-
rithms is O 1n3 log n 2  flops for n 3 n 3 n data [7]. For further 
details, we refer to [7] and [68]. 

RECENT APPLICATIONS
In this section, we shall review applications of the curvelets in 
image processing, seismic exploration, fluid mechanics, solving 
of PDEs, and compressed sensing, to show their potential as an 
alternative to wavelet transforms in some scenarios. 

IMAGE PROCESSING
In 2002, the first-generation curvelet transform was applied for 
the first time to image denoising by Starck et al. [60], and by 
Candès and Guo [13]. The applications of the first-generation 
curvelets were extended to image contrast enhancement [62] 
and astronomical image representation [61] in 2003, and to 
fusion of satellite images [17] in 2005. After the effective sec-
ond-generation curvelet transform [12] had been proposed in 
2004, the applications of curvelets increased quickly in many 
fields involving image/video presentation, denoising, and clas-
sification. For instance, Ma et al. applied the second-generation 
curvelets for motion estimation and video tracking of geophysi-
cal flows [45] and deblurring [43]. Ma and Plonka presented 
two different models for image denoising by combining the 
discrete curvelet transform with nonlinear diffusion schemes. 
In the first model [49], a curvelet shrinkage is applied to the noisy 
data, and the result is further processed by a projected total varia-
tion diffusion to suppress pseudo-Gibbs artifacts. In the second 
model [56], a nonlinear reaction-diffusion equation is applied, 
where curvelet shrinkage is used for regularization of the diffusion 
process. Starck et al. [63], [3] applied curvelets for morphological 
component analysis. Recently, B. Zhang et al. [69] used curvelets 
for Poisson noise removal in comparison with wavelets and ridge-
lets. In [70], C. Zhang et al. successfully applied the multiscale 
curvelet transform to multipurpose watermarking for content 
authentication and copyright verification. Jiang et al. [36] consid-
ered structure and texture image in painting with the help of an 
iterative curvelet thresholding method. Tessens et al. [66] pro-
posed a new context adaptive image denoising by modeling of 
curvelet domain statistics. By performing an intersubband statisti-
cal analysis of curvelet coefficients, one can distinguish between 
two classes of coefficients: those that represent useful image con-
tent, and those dominated by noise. Using a prior model based on 

marginal statistics, an appropriate local spatial activity  indicator 
for curvelets has been developed that is found to be very useful for 
image denoising, see [66]. Geback et al. [30] applied the curvelets 
for edge detection in microscopy images. 

Interestingly, the pure discrete curvelet transform is less suit-
able for image compression and for image denoising. The reason 
may be the redundancy of the curvelet frame. Most successful 
approaches related with the discrete curvelet transform are hybrid 
methods, where curvelets are combined with another technique 
for image processing. These methods usually can exploit the ability 
of the curvelet transform to represent curve-like features. 

Let us give one example of image denoising [49], where curve-
let shrinkage is combined with nonlinear anisotropic diffusion. 
Figure 10(a) shows a part of noisy Barbara image. Figure 10(b)–(f) 
present the denoising results by using tensor-product Daubechies’s 
DB4 wavelets, TV diffusion, contourlets, curvelets, and 
TV-combined curvelet transform [49], respectively. The curvelet-
based methods preserve the edges and textures well. 

SEISMIC EXPLORATION
Seismic data records the amplitudes of transient/reflecting waves 
during receiving time. The amplitude function of time is called 
seismic trace. A seismic data or profile is the collection of these 
traces. All the traces together provide a spatio-temporal sam-
pling of the reflected wave field containing different arrivals that 
respond to different interactions of the incident wave field with 
inhomogeneities in Earth’s subsurface. Common denominators 
among these arrivals are wave fronts (as shown in Figure 11(a) 
for a real seismic profile), which display anisotropic line-like fea-
tures, as edges and textures in images. They basically show 
behaviors of C2-continuous curves. The main characteristic of 
the wave fronts is their relative smoothness in the direction 
along the fronts and their oscillatory behavior in the normal 
direction. A crucial problem in seismic processing is to preserve 
the smoothness along the wave fronts when one aims to remove 
noise. From a geophysical point of view, curvelets can be seen as 
local plane waves. They are optimal to sparsely represent the 
local seismic events and can be effectively used for wave 
 front- preserving seismic processing. Therefore, the curvelet 
decomposition is an appropriate tool for seismic data processing. 

Figure 11 shows a denoising of a real seismic data set by curve-
lets, in comparison to wavelets. Five decomposing levels are used 
in both transforms. Figure 12 shows the comparison of subband 
reconstruction in the first three levels; from coarse scale to fine 
scale. It can be seen clearly that the curvelets perform much better 
than wavelets to preserve the wave fronts/textures in multiscale 
decomposition and denoising. We also observe that the curvelet 
transform can achieve an almost complete data reconstruction if 
used without any thresholding for coefficients (reconstructed 
signal-to-noise ratio (SNR) 5 310.47 and error 5 2.9770e-010). 

So far, curvelets have been applied successfully in seismic pro-
cessing. Hennenfent and Herrmann [32] suggested a nonuni-
formly sampled curvelet transform for seismic denoising. 
Neelamani et al. [52] proposed a 3-D curvelet-based effective 
approach to attenuate random and coherent noise in a 3-D data 
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set from a carbonate environment. Comparisons of wavelets, con-
tourlets, curvelets, and their combination for denoising of ran-
dom noise have been also investigated in [58]. Douma and de 
Hoop [25] presented a leading-order seismic imaging by curve-
lets. They show that using curvelets as building blocks of seismic 
data, the Kirchhoff diffraction stack can (to leading order in angu-
lar frequency, horizontal wave number, and migrated location) be 
rewritten as a map migration of coordinates of the curvelets in 
the data, combined with an amplitude correction. This map 
migration uses the local slopes provided by the curvelet decompo-
sition of the data. Chauris and Nguyen [16] considered seismic 
demigration/migration in the curvelet domain. The migration 
consists of three steps: decomposition of the input seismic data 
(e.g., common offset sections) using the curvelet transform; inde-
pendent migration of the curvelet coefficients; and inverse curvelet 

transform to obtain the final depth migrated image. Currently, 
they concentrate on a ray-based type of prestack depth-migration 
(i.e., common-offset Kirchhoff depth migration) with respect to 
heterogeneous velocity models. It turns out that curvelets are 
almost invariant under the migration operations. The final objec-
tive is to be able to derive a formulation and build an efficient 
algorithm for the full waveform inversion in the curvelet domain. 

In addition, curvelet-based primary-multiple separation [35], 
extrapolation [41], and seismic data recovery [34], [33], [65] 
have been also proposed by Herrmann et al.

TURBULENCE ANALYSIS IN FLUID MECHANICS
Turbulence has been a source of fascination for centuries 
because most fluid flows occurring in nature, as well as in engi-
neering applications, are turbulent. Fluid turbulence is a para-

digm of multiscale phenomena, where the 
coherent structures evolve in an incoher-
ent random background. Turbulence is 
difficult to approximate and analyze 
mathematically or to calculate numeri-
cally because of its range of spatial and 
temporal scales. The geometrical repre-
sentation of flow structures might seem 
to be restricted to a well-defined set of 
curves along which the data are singular. 
As a consequence, the efficient compres-
sion of a flow field with minimum loss of 

[FIG10] Image denoising: (a) noisy image, (b) wavelet denoising, (c) TV-diffusion denoising, (d) contourlet denoising, (e) curvelet 
denoising, and (f) TV-combined curvelet denoising. 
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[FIG11] Comparison of seismic denoising: (a) original data, (b) wavelet denoising, and
(c) curvelet denoising.
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the geometric flow structures is a crucial 
problem in the simulation of turbulence. 
The development of appropriate tools to 
study vortex breakdown, vortex reconnec-
tion, and turbulent entrainment at lami-
nar-turbulent interfaces, is imperative to 
enhance our understanding of turbu-
lence. Such tools must capture the vorti-
cal structure and dynamics accurately to 
unravel the physical mechanisms under-
lying these phenomena. 

Recently, the curvelets have been 
applied to study the nonlocal geometry of 
eddy structures and the extraction of the 
coherent vortex field in turbulent flows 
[2], [47], [48]. Curvelets start to influ-
ence the field of turbulence analysis and 
have the potential to upstage the wavelet 
representation of turbulent flows 
addressed in [26] and [27]. The multi-
scale geometric property, implemented by 
means of curvelets, provides the frame-
work for studying the evolution of the 
structures associated to the main ranges 
of scales defined in Fourier space, while 
keeping the localization in physical space 
that enables a geometrical study of such 
structures. Such a geometrical character-
ization can provide a better understand-
ing  o f  cascade  mechanics  and 
dissipation-range dynamics. Moreover, 
curvelets have the potential to contribute 
to the development of structure-based 
models of turbulence fine scales, subgrid-
scale models for large-eddy simulation, 
and simulation methods based on prior wavelet transforms [2]. 

Figure 13 gives an example of the extraction of coherent 
fields from turbulent flows. The curvelet method preserves the 
edges and structures better than wavelet methods. The results 
of multiscale turbulence analysis depend on the threshold or 
shrinkage. The question of how to find the optimal threshold 
to  separate  coherent fields and incoherent random fields still 
remains open. 

SOLVING OF PDES

Candès and Demanet [5], [6] have shown that curvelets essen-
tially provide optimally sparse representations of Fourier inte-
gral operators. While the wavelet transform is optimal for 
solving elliptical PDEs, the motivation to use the curvelet 
transform is that for a wide class of linear hyperbolic differen-
tial equations, the curvelet representation of the solution 
operator is both optimally sparse and well organized. Sparsity 
means that the matrix entries decay nearly exponentially fast, 
and they are well organized in the sense that very few nonneg-
ligible entries occur near a few shifted diagonals. Wave fronts 

of solutions can be also sparsely represented in curvelet 
domain [6]. Some updated results for hyperbolic evolution 
equations with limited smoothness have been obtained by 
Andersson et al. [1]. The key idea of the existing methods is 
first to decompose the initial fields by the curvelet transform, 
and then to compute the rigid motions of the significant 
curvelet coefficients along Hamiltonian ray flows at each scale. 
Finally, one needs to reconstruct the evolution coefficients at 
all scales by an inverse curvelet transform and obtains an 
approximate wave field u 1x, t 2  at a given time t. The theory is 
quite elegant but still far away from practical applications. The 
papers cited above show the potential of curvelets for solving 
of PDEs from the point of view of mathematical analysis and 
raise the hope to achieve fast algorithms for the solution of 
hyperbolic PDEs using curvelets. 

Let us consider a wave equation with the associated Cauchy 
initial value problem 

'2u

't2
1x, t 2 5 y2 Du 1x, t 2   u 1x, 0 2 5 u0 1x 2 ,  'u

't
1x, 0 2 5 u1 1x 2 .

 (11)

[FIG12] Comparisons of subband reconstruction in the first three levels from coarse scale 
to fine scale by (a)–(c) wavelet transform and (d)–(f) curvelet transform.

(d) (e) (f)

(a) (b) (c)

[FIG13] Extraction of coherent fields from turbulent flows: (a) original flow, (b) coherent 
components by wavelets, and (c) curvelets.

(a) (b) (c)

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE   [130]   MARCH 2010

For simplicity, assume that y  is a constant wave speed, 
and Du 1x, t 2 5 '2/x1

2 u 1x, t 2 1 1'2 2 / 1x2
2 2u 1x, t 2  denotes the 

usual Laplace operator. Its solution can be written as 
u 1x, t 2 5 F 1x, t 2u0 1x 2 1 G 1x, t 2u1 1x 2 ,  with suitable solution 
operators F 1x, t 2  and G 1x, t 2  (involving Green’s functions) 
that can be sparsely represented in curvelet domain. 

Curvelet-based finite difference schemes for seismic wave equa-
tions have been studied in [64]. The goal is to construct a fast 
adaptive scheme for numerical modeling of wave propagation. 
Similarly as with prior wavelet-based finite difference schemes, 
one crucial problem is to explore how the differential operator D 
(or 'xi

) can be computed by the curvelet transform in an efficient 
way. The 2-D wave field u can be transformed into curvelet domain 
by u 1x1, x2, t 2 5 am

cm 1t 2fm 1x1, x2 2 . Here, we have used the 
tight frame property (7) with the short notation m 5 1 j, k, l 2 , and 
cm 1t 2  denotes the mth curvelet coefficient of u at time t. A possi-
ble way to compute the curvelet coefficients of Du is 

cm
^ J cm 1Du 2 J 3Du 1x, t 2  fm 1x 2  dx 5 3Du^ 1j, t 2  f̂m 1j 2  dj 

 5 3 12j1
2 2 j2

2 2  û 1j, t 2  f̂m 1j 2  dj.

Using the definition of the curvelet coefficients in (10), we 
obtain with Suj, l j 5 1j1, 2 j1tanuj, l 1 j2 2T  

cm
^ 5 3 3 2 11 1 tan2uj,l 2  j1

2 2 j2
2 1 2 1tanuj,l 2  j1j2 4  

 3 û 1Suj,l
j 2  f|̂j,0,0 1j 2  ei8kj,j9 dj

 5 4j 111tan2uj,l 2'
2cm

'k1
2 14: j/2;

'2cm

'k2
2 22j11 2: j/2; tanuj, l 

'2cm

'k1'k2
.

Here we recall that k 5 1k1, k2 2T [ Z2 and kj 5 1k1/2j, k2/2:j/2; 2T. 
That means, we can obtain the curvelet coefficients of Du by 

using the coefficients of the instant wave field u. Thus, we can 
rewrite the wave equation in coefficient domain by 

 
'2cm

't2 5 y2a4j 11 1 tan2uj,l 2'
2cm

'k1
2 1 4:j/2;

'2cm

'k2
2

 2 2j11 2: j/2;tanuj,l 
'2cm

'k1'k2
b. (12)

Figure 14 shows an example of curvelet coefficients of an 
instant wave field at the coarsest curvelet detail scale, by imple-
menting the computation in curvelet domain as given in (12). 
For details of this approach we refer to [64]. Using suitable 
thresholding, one can implement a fast adaptive computation for 
the wave propagation. Unfortunately, due to the redundancy of 
the current discrete curvelet algorithm, the curvelets have not 
performed at the level that we expected. The matrices are not as 
sparse as the estimates promise. The efficient numerical treat-
ment of PDEs using curvelets is still a challenging problem. 

COMPRESSED SENSING
Finally, we mention a new direction of applications of the curve-
let transform to the so-called compressed sensing or compres-
sive sampling (CS), an inverse problem with highly incomplete 
measurements. CS [14], [15], [22] is a novel sampling paradigm 
that carries imaging and compression simultaneously. The CS 
theory says that a compressible unknown signal can be recov-
ered by a small number of random measurements using sparsi-
ty-promoting nonlinear recovery algorithms. The number of 
necessary measurements is considerably smaller than the num-
ber of needed traditional measurements that satisfy the 
Shannon/Nyquist sampling theorem, where the sampling rate 
has to be at least twice as large as the maximum frequency of 
the signal. The CS-based data acquisition depends on its sparsity 

[FIG14] Curvelet coefficients of an instant wave field at the coarsest curvelet detail scale. (a)–(h) denotes eight different directional 
subbands in this curvelet scale. 
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rather than its bandwidth. CS might have an important impact 
for designing of measurement devices in various engineering 
fields such as medical magnetic resonance (MRI) imaging and 
remote sensing, especially for cases involving incomplete and 
inaccurate measurements limited by physical constraints, or 
very expensive data acquisition. 

Mathematically, we handle the fundamental problem of 
recovering a signal x [ RN  from a small set of measure-
ments y [ RK. Let A [ RK3N  be the so-called CS measure-
ment matrix, where K V N, i.e., there are much fewer rows 
in the matrix than columns. The measurements can be 
described as [14] 

 y 5 Ax 1 P. (13)

Here P denotes possible measurement errors or noise. It seems 
to be hopeless to solve this ill-posed 
underdetermined linear system since the 
number of equations is much smaller 
than the number of unknown variables. 
However, if the x  is compressible by a 
transform, as e.g., x 5 T21c,  where T 
denotes the discrete curvelet transform, 
and the sequence of discrete curvelet coef-
ficients c 5 1cm 2  is sparse, then we have 
y 5 AT21c 1 P 5 A|c 1 P. If the measure-
ment matrix A is not correlated with T, 
the sparse sequence of curvelet coeffi-
cients c can be recovered by a sparsity-
constraint l1-minimization [14] 

min
c
7y 2 A|c 7 l2

1 l 7c 7 l1
.

The second term is a regularization term 
that represents the a priori information of 
sparsity. To solve the minimization, an 
iterative curvelet thresholding (ICT) can 
be used, based on the Landweber descent 
method (see, e.g., [33]) 

cp11 5 St 1cp 1 A|T 1y 2 A|cp 2 2 , 
until 7cp11 2 cp 7 , e, for a given error e. 
Here the (soft) threshold function St, 
given by 

 St 1x 2 5 •
x 2 t,    x $ t,
x 1 t,    x # 2 t,
0,           |x| , t, 

 

is taken component wisely, i.e., for a se -
quence a 5 1am 2  we have St 1a 2 5 1St am 2 .

Figure 15 shows an example of com-
pressed sensing with 25% Fourier mea-
surements. Here the operator A  is 

obtained by a random subsampling of the Fourier matrix. 
Figure 15(b) shows the 25% samples in Fourier domain, 
Figure 15(c) is the recovering result by zero-filling recon-
struction, and Figure 15(d) is the result found by ICT. Figure 
15(e) and (f) denotes the changes of the SNR and errors of the 
recovered images as the number of iterations increases. The 
unknown MRI image can be obtained by using highly incom-
plete measurements, which can reduce the online measure-
ment time and thus lessen the pain of a patient. 

The motivation of applying the curvelet thresholding 
method is that most natural images are compressible by the 
curvelet transform. Currently, a few researchers have applied 
the ICT method to compressed sensing in seismic data recov-
ery [33], [34], [65], and remote sensing [44], [46]. Variant 
ICT methods (see e.g., [57]) have been also proposed for com-
pressed sensing.

SNR = 26.95 dB SNR = 46.33 dB
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[FIG15] Compressed sensing in Fourier domain for medical imaging: (a) original MRI 
image, (b) pseudorandom Fourier sampling, (c) recovery by zero-filling reconstruction, (d) 
recovery by ICT, (e) SNR (in dB) of the recovered image versus the number of iterations 
for the ICT, and (f) recovery error versus the number of iterations for the ICT.
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Figure 16 shows an example for the curvelet-based com-
pressed sensing in remote sensing [44], [46]. It can be seen 
that the curvelet method is superior to the wavelet method 
to recover the edges. 

FUTURE WORK
The multiresolution geometric analysis technique with 
curvelets as basis functions is verified as being effective in 
many fields. However, there are some challenging prob-
lems for future work. 

The computational cost of the curvelet transform is higher 1) 
than that of wavelets, especially in terms of 3-D problems. 
However, the theory and application of the 3-D curvelets are 
burgeoning areas of research, and it is possible that more effi-
cient curvelet-like transforms will be developed in the near 
future. Currently, a fast message passing interface-based paral-
lel implementation can somewhat reduce the cost [68]. How 
to build a fast orthogonal curvelet transform is still open. 

The issue of how to explore suitable thresholding func-2) 
tions that incorporate and exploit the special characteris-
tics of the curvelet transform is very important for 
curvelet applications involving edge detection, denoising, 
and numerical simulation. 
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O
ne of the recent innova-
tions in computer engi-
neering has been the 
development of multicore 
processors, which are 

composed of two or more independent 
cores in a single physical package. Today, 
many processors, including digital signal 
processors (DSPs), mobile, graphics, and 
general-purpose central processing units 
(CPUs) [1] have a multicore design, driven 
by the demand of higher performance. 
Major CPU vendors have changed strategy 
away from increasing the raw clock rate to 
adding on-chip support for multithreading 
by increases in the number of cores; dual- 
and quad-core processors are now com-
monplace. Signal and image processing 
programmers can benefit dramatically 
from these advances in hardware, by mod-
ifying single-threaded code to exploit par-
allelism to run on multiple cores. 

This article describes the use of open 
multiprocessing (OpenMP) to multithread 
image processing applications to take ad-
vantage of multicore general-purpose 
CPUs. OpenMP is an extensive and power-
ful application programming interface 
(API), that supports many functionalities 
required for parallel programming. The 
purpose of this article is to provide a high-
level overview of OpenMP and present 
simple image processing operations to 
demonstrate the ease of implementation 
and effectiveness of OpenMP. More sophis-
ticated applications could be built on simi-
lar principles. 

OPENMP
Historically, a key challenge in parallel 
computing has been the lack of a broadly 
supported, simple-to-implement parallel 
programming model. As a result, numer-

ous vendors provided different models, 
with often mixed degrees of complexity 
and portability. Software programmers 
subsequently found it difficult to adapt 
applications to take advantage of multi-
core hardware advances. 

OpenMP was designed to bridge this 
gap, providing an industry standard, paral-
lel programming API for shared memory 
multiprocessors, including multicore pro-
cessors. A vendor-independent OpenMP 
Architecture Review Board, which 
includes most of the major computer 
manufacturers, oversees the OpenMP 
standard and approves new versions of the 
specification. Support for OpenMP is cur-
rently available in most modern Fortran 
and C/C++ compilers as well as numerous 
operating systems, including Microsoft 
Windows, Linux, and Apple Macintosh OS 
X. Version 1.0 of OpenMP was released in 
1997. The latest version, 3.0, was released 
in 2008. Please see the official OpenMP 
Web site [2] for the full specification, list 
of compilers supporting the standard, and 
reference documents.

We should note that OpenMP is cer-
tainly not the only way of achieving paral-
lelism on multicore systems. Other 
implementation models, such as CILK, 
Pthreads, and MPI [3], [4] exist and may be 
a good choice depending on the hardware, 
application, and the preference of the pro-
grammer. In our experience, OpenMP has 
the advantages of being exceedingly simple 
to learn and implement, in addition to 
being powerful and well suited to modern 
processor architectures. 

USING OPENMP
OpenMP works as a set of preprocessor 
directives, run-time library routines, and 
environment variables provided to the pro-
grammer, who instructs the compiler how 
a section of code can be multithreaded. In 

Fortran, the directives appear as comments, 
while in C/C++ they are implemented as 
pragmas. In this way, compilers that do not 
support OpenMP will automatically ignore 
OpenMP directives, while compilers that do 
support the standard will process and 
potentially optimize the code based on the 
directives. Since the OpenMP API is inde-
pendent of the machine/operating system, 
properly written OpenMP code for one plat-
form can easily be recompiled and run on 
another platform. However, in this article, 
we present C++ code examples that were 
compiled using Microsoft Visual C++ 2005 
and executed in Windows XP. Using this 
compiler, one can enable OpenMP in the 
project settings (Configuration Properties
S C/C++ S  Language S OpenMP 

Support) and include omp.h. 
An OpenMP application always begins 

with a single thread of control, called the 
master thread, which exists for the dura-
tion of the program. The set of variables 
available to any particular thread is called 
the thread’s execution context. During 
execution, the master thread may encoun-
ter parallel regions, at which the master 
thread will fork new threads, each with its 
own stack and execution context. At the 
end of the parallel region, the forked 
threads will terminate, and the master 
thread continues execution. Nested paral-
lelism, for which forked threads fork fur-
ther threads, is supported. 

LOOP-LEVEL PARALLELISM
As mentioned above, parallelism is added 
to an application by including pragmas, 
which, in C++, have the following form: 

#pragma omp <directive> 

[clauses]

There are numerous directives, but this 
article focuses on the parallel for
directive, which offers a simple way to  Digital Object Identifier 10.1109/MSP.2009.935452
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achieve loop-level parallelism, often exist-
ing in signal- and image-processing algo-
rithms. The optional clauses modify the 
behavior of the directive. 

The parallelization of loops is the most 
common use of OpenMP. Consider the fol-
lowing code, which computes a sine wave 
with amplitude A and frequency w

for (int n=0; n<N; n++)

x[n] = A*sin(w*n);

With OpenMP, this code can be trivially 
parallelized as 

#pragma omp parallel for

for (int n=0; n<N; n++) 

 x[n] = A*sin(w*n); 

Here, the directive instructs the compiler 
that the next for loop is to be parallel-
ized. The compiler will then distribute the 
work among a set of forked threads. If we 
assume that there are four threads forked, 
and N 5 100, then the iterations may be 
spread among the processors such that 
iterations 0224 are given to Thread 1, 
iterations 25249 are given to Thread 2, 
iterations 50274 are given to Thread 3, 
iterations 75299 are given to Thread 4. 
Such allocation of work assumes static 
scheduling, which will be discussed below. 
The four threads will run simultaneously. 
If a forked thread completes its work 
before any other forked thread, it will 
block. Once all forked threads complete 
their work, the master thread then 
resumes execution. Note the simplicity of 
using OpenMP—the loop was parallelized 
with a single line of code. 

The code in the above example was eas-
ily parallelized because it does not contain 
loop dependencies, which means the com-
piler can execute the loop in any order. 
Consider a modification of this loop 

 x[0] = 0;

 for (int n=1; n<N; n++) 

 x[n] = x[n-1] + A*sin(w*n);

The loop is no longer trivially parallel-
ized, as the computation of the x[n] now 
depends on x[n-1]. Thread 2 may start 
by computing x[25], which depends on 
x[24]. However, Thread 1 might not yet 

have computed x[24], resulting in a run-
time error. The programmer must be care-
ful to ensure the parallelized loop is free of 
loop dependencies, as the compiler does not 
check this. As a result of such dependencies, 
some algorithms require additional coding 
to remove the dependencies [4] to render 
them amenable to parallelization.

VARIABLE SCOPE
As mentioned above, every thread has its 
own execution stack that contains variables 
in the scope of the thread. When paralleliz-
ing code, it is very important to identify 
which variables are shared between the 
threads, and which are private. In the par-
allelized sine wave example above, the vari-
ables x, A, w, and N were shared, while n
was private; that is, each thread has its own 
n but shares all the other  variables. 

OpenMP provides explicit constructs to 
specify shared and private variables in the 
execution stack. By default, all variables 
are shared, except 

the loop index. 1)
variables local (declared within) the 2)

loop. 
variables listed in private clauses.3)

One can explicitly assign shared and pri-
vate variables using directive clauses 

 #pragma omp parallel for \

 private(n) \ 

 shared(A, x, w) 

for (int n = 0; n < N; n++)

  x[n] = A * sin(w * n);

Copies of the variables in the private clause 
will be placed into each thread’s execution 
context. Note, however, that any variable 
in a private clause is initially undefined. 
This can lead to coding errors. For exam-
ple, consider 

int x = 5;

#pragma omp parallel for 

 private(x)

for (int n = 0; n < N; n++) 

// The value of x is 

undefined 

in this case, the firstprivate clause 
can be used to copy the value of a variable 
to the execution stack of each thread 

int x = 5;

#pragma omp parallel for

firstprivate(x)

for (int n = 0; n < N; n++)

// The value of x is 5 

for each thread

SCHEDULING
Earlier, we mentioned static scheduling, 
which divides work of the loop evenly among 
the different threads. Static scheduling is the 
default work sharing construct and works 
well for  balanced loops that have a relatively 
constant cost per iteration. However, some 
loops are unbalanced, with some iterations 
taking much longer than others. For such 
loops, static scheduling is not ideal, as fast 
threads will complete their work early and 
block until slow threads have completed 
their work. With OpenMP, it is possible to 
specify the scheduling mechanism (for 
example, using the static or dynamic
clause). In a dynamic schedule, the number 
of iterations for each thread can vary 
depending on the workload. When free, 
each thread requests more iterations until 
the loop is complete. Dynamic scheduling is 
more flexible but does add additional over-
head in coordinating the distribution of 
work amongst the threads. Later, we will 
show an example where dynamic scheduling 
makes a significant difference in run time of 
a parallelized image processing algorithm. 

By default, the system will decide how 
many threads to fork during run time. 
The number of spawned threads can be 
retrieved using integer omp_get_

num_threads(void). In addition, 
the number of threads may be set using 
omp_set_num_threads(integer)

or by using an environment variable, 
OMP_NUM_THREADS.

APPLICATIONS OF IMAGE 
PROCESSING USING OPENMP
In the previous section, we provided an 
introduction to OpenMP and a short 
description of how one may achieve loop-
level parallelization using the parallel 
for pragma. In this section, we demon-
strate examples that show the ease and 
power of OpenMP for image processing. 
The examples are, by design, simple so that 
the principles can be easily demonstrated. 
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[applications CORNER] continued

IMAGE WARPING
An image warp is a spatial transformation 
of an image and is commonly found in 
photo-editing software as well as registra-
tion algorithms. In this example, we apply 
a “twist” transformation of the form 

x r5 1x 2 cx 2cos u 1 1y 2 cy 2sin u 1 cx 
y r5 21y 2 cy 2 sin u
  1 1y2 cy 2cos u1 cy,  (1)

where [cx, cy]
T is the rotation center, 

u 5 r/2 is a rotation angle that increases 
with radius r, [x, y]T is the point before 
transformation, and [x9, y9]T is the point 
after transformation. The effect of this image 
transformation in shown in Figure 1(b).

We implemented this transformation 
using OpenMP; the code listing appears in 
Listing 1. In the code, both the original 
image and transformed image are shared 
variables, along with the width and height 
of the image. The code loops over the pix-
els [x9, y9]T of the transformed image, 
mapping them back to the original image 
using the inverse transform of (1). In the 
original image, the pixels are bilinearly 
interpolated. Each thread requires its own 
variables for x, y, index, radius, 
theta, xp, and yp. Since these variables 
are initialized within the parallelized code, 
we use the shared clause. OpenMP will 
multithread the outer loop (over yp) using 
static scheduling. 

On a 512 3 512 image, and using a 
quad-core 2.4 GHz CPU, the single-thread-
ed code requires 62.2 ms to process the 
image, while the multithreaded code 

 requires 17.7 ms, corresponding to a 3.53 
speedup. In Figure 1(c), we present a plot 
showing the speedup as a function of 
image size (measured in one dimension of 
the square image). The code, very easily 
multithreaded, achieves an excellent 
speedup when executed on multiple cores. 

MATHEMATICAL 
BINARY MORPHOLOGY
Mathematical morphology was originally 
developed for binary images and later 
was extended to grayscale images. 
Morphological operations are widely used 
in image segmentation, noise removal, 
and many other applications and employ 
a structuring element to probe an image 
and create an output image [5]. At its 
core, mathematical morphology has two 
basic operations: erosion and dilation. 
Erosion and dilation of an image/set X by 
a structuring element B are defined in (2) 

 ErosionB 1X 2 5 5x|Bx # X6  
 DilationB 1X 2 5 5x|Bx d X 2 [6, (2)

where B represents the structuring ele-
ment and Bx denotes B centered at x. The 
result of erosion by B can be explained as 
the locus of points hit by the center of B 
when B moves entirely inside X. The result 
of dilation by B are the locus of the points 
covered by B when the center of B moves 
inside X. Other operations can be defined 
using combinations of erosion and dila-
tion. For example, a closing is defined as a 
dilation followed by an erosion. 

We implemented binary morphology 
erosion and dilation using OpenMP; the 
erosion code is listed in Listing 2 and the 
dilation code is similar. At each pixel, the 
function FullFit checks if the structur-
ing element entirely fits into foreground 
binary region of the input image, as 
defined by (2). Here, OpenMP will multi-
thread the outer loop (over y) using 
dynamic scheduling. 

On a 512 3 512 image, and using a 
quad-core 2.4 GHz CPU, for a closing 
operation by a disk-structure element 
with radius 15 pixels, the single-
threaded code requires 79.4 ms to pro-
cess the image, while the multithreaded 
code requires 33.9 ms, corresponding to 
a 2.343 speedup. Figure 2(a) and (b) 
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[FIG1] (a)–(c) show an example of a twist 
transformation applied to an image.

[LISTING 1] PARALLELIZED CODE FOR THE IMAGE WARP.

int index, xp, yp, tx = width / 2, ty = height / 2; 
float x, y, radius, theta, PI = 3.141527f, DRAD = 180.0f / PI; 
#pragma omp parallel for \ 
shared(inputImage, outputImage, width, height) \ 
private(x, y, index, radius, theta, xp, yp) 
for (yp = 0; yp < height; yp++) { 
 for (xp = 0; xp < width; xp++) { 
  index = xp + yp * width; 
  radius = sqrtf((xp - tx) * (xp - tx) + (yp - ty) * (yp - ty)); 
  theta = (radius / 2) * DRAD; 
  x = cos(theta) * (xp - tx) - sin(theta) * (yp - ty) + tx; 
  y = sin(theta) * (xp - tx) + cos(theta) * (yp - ty) + ty; 
   outputImage[index] = BilinearlyInterpolate(inputImage, width, height, 

x, y); 
 } 
}

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE   [137]   MARCH 2010

illustrates the input image and the 
closed result, respectively. In Figure 
2(c), we present a plot showing the 
computation time as a function of struc-
ture element size (in radial pixels). 

Binary morphology is a good example 
where the dynamic scheduling is helpful, 
as the same example scheduled statically 
requires 95.1 ms. In this example, the 
workload for a thread is unbalanced by the 
shape of the input. There may be large dif-
ferences in the number of foreground pix-
els within the part of the image allocated 
to each thread, meaning dynamic schedul-
ing is a better choice for how to distribute 
the work. 

MEDIAN FILTERING
Median filtering is a commonly applied 
nonlinear filtering technique that is par-
ticularly useful in removing speckle and 
salt-and-pepper noise [6]. Simply put, an 
image neighborhood surrounding each 

pixel is defined, and the median value of 
this neighborhood is calculated and is 
used to replace the original pixel in the 
output image 

Imed 3x, y 45  
  median 1Iorig 3i, j 4, i, j [ nbor 3x, y 4 2 . (3)

In this example, we choose a square 
neighborhood around each pixel, 
defined using the halfwidth of the 
neighborhood, i.e., for a halfwidth of n, 
the number of pixels in the neighbor-
hood would be (2n11)2. At each pixel, 
the function GetNbors retrieves the 
neighbors; any neighbors that lie out-
side the image domain are assigned to 
be that of the nearest pixel within the 
image boundary. These neighbors are 
then sorted using the C++ STL sort 
function and the median selected. 

On a 512 3 512 medical image, and 
using a quad-core 2.4 GHz CPU, we show the result of median filtering using a half 

width of three, i.e., the number of neigh-
bors 5(23311)25 49 in Figure 3(a) and 
(b). In Figure 3(c), we demonstrate the 
linear acceleration of the median filtering 
using different numbers of threads on dif-
ferent sizes of neighborhoods.

NORMALIZATION
Normalization is a process whereby the 
pixel intensities are scaled linearly. The 
linear scale factors can include those 
that will give the normalized image a 
prescribed minimum and maximum, 
or, say, a new intensity average. This is 
usually performed to bring the intensi-
ties into a standard range. In our 
 example, we wish to alter the pixel 
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[FIG2] (a)–(c) show an example of a 
morphological closing applied to an 
image.

[LISTING 2] PARALLELIZED CODE FOR BINARY EROSION.

int x, y; 
#pragma omp parallel for \ 
shared(inputImage, outputImage, structuringElement, width, height) \ 
private(x, y) schedule(dynamic) 
for (y = 0; y < height; y++) { 
 for (x = 0; x < width; x++) { 
 int index = x + y*width; 
 if (inputImage[index]) { 
 if (FullFit(inputImage, x, y, structuringElement)) 
 outputImage[index]=1; 
 else 
 outputImage[index]=0; 
 }
 }
}

[LISTING 3] PARALLELIZED CODE FOR MEDIAN FILTERING USING A 
HALF WIDTH OF THREE.

int x, y, halfWidth, nborSize; 

PixelType nbors[MAX_NBOR_SIZE]; 

halfWidth = 3; 

nborSize = 2*halfWidth + 1; 

nborSize *= nborSize; 

#pragma omp parallel for \ 

shared(inputImage, outputImage, structuringElement, width, height) \ 

private(x, y, nbors) firstprivate(halfWidth, nborSize) schedule(static) 

for (y = 0; y < height; y++) { 

 for (x = 0; x < width; x++) { 

 GetNbors(inputImage, x, y, width, height, halfWidth, nbors); 

 sort(&nbors[0], &nbors[nborSize]); 

 int index = x + y*width; 

 outputImage[index] = nbors[nborSize/2]; 

 } 

}
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[applications CORNER] continued

intensities so that they have a mean 
intensity of zero and a standard devia-
tion of unity, which is common when 
analyzing images from a statistical 
viewpoint. This is achieved by first cal-
culating the mean and standard devia-
tion of the pixel intensities, and then 
scaling them as 

 Inew 5
1Iorig 2 m 2

s
,   (4)

where m and s are the mean and stan-
dard deviation of the image intensities. 
To parallelize the estimation of m and 
s, we use an OpenMP reduction vari-
able, which indicates that a variable has 
to be accumulated from all the threads 
in some way within the parallel loop. In 
our example, the reduction performs a 
sum (1), although there are several 

other types, including subtraction (2), 
product (*), and bit-wise and logical 
operations. Note that in Fortran, mini-
mum and maximum can also be used in 
reduction clauses as they are built in 
functions, whereas in C++ they are not.

To test the code, we renormalized 
the image from Figure 3(a) for different 
threads, and the processing took 5.6 ms 
for one thread, and 1.6 ms for four 
threads, demonstrating a near factor of 
four acceleration. 

OUTLOOK
This article has only scratched the sur-
face of the capabilities of OpenMP for 
parallelized signal and image processing 
on multicore machines. More advanced 
features, such as synchronization and 
parallel regions, extend the basic func-
tionalities described here. However, with 
simple use of the OpenMP parallel 
for directive, it is remarkably easy for 
the signal processing programmer to 
achieve loop level parallelism. As general-
purpose CPUs continue to advance, 
OpenMP will continue provide an uncom-

plicated way to harness the increasing 
power of multicore architectures. 
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[FIG3] (a)–(c) show an example of 
median filtering applied to an image.
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[LISTING 4] PARALLELIZED CODE FOR RESCALING DATA.

int index;

int n = width*height;

float mean = 0.0, var = 0.0, svar, std;

// Calculate the mean of the image intensities

#pragma omp parallel for \

shared(inputImage, n) reduction(+:mean) \

private(index) schedule(static)

for (index = 0; index < n; index++) {

 mean += (float)(inputImage[index]);

}

mean /= (float)n;

// Calculate the standard deviation of the image intensities

#pragma omp parallel for \

shared(inputImage, n) reduction(+:var) \

private(index, svar) schedule(static)

for (index = 0; index < n; index++) {

 svar = (float)(inputImage[index]) - mean;

 var += svar*svar;

}

var /= (float)n;

std = sqrtf(var);

// Rescale using the calculated mean and standard deviation

#pragma omp parallel for \

shared(inputImage, outputImage, n) private(index) \

firstprivate(mean, std) schedule(static)

for(index = 0; index < n; index++) {

 outputImage[index] = (inputImage[index] - mean)/std;

}

____________

___________

___________
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A Flexible Window Function for Spectral Analysis

R
egarding window functions 
used in spectral analysis, the 
most important performance 
measures are 3-dB bandwidth 
and sidelobe attenuation. For 

many window functions, Hanning and 
Hamming for example, we have no con-
trol over a window’s 3-dB bandwidth and 
sidelobe attenuation for a given  window 
length. For other window functions—
Kaiser, Gaussian, and Chebyshev—we 
can reduce those windows’ 3-dB band-
width to get improved spectral resolu-
tion. However, with these later window 
functions (what we refer to as “conven-
tional windows”), spectral resolution 
improvement comes at the expense of 
sidelobe attenuation reduction that 
degrades our ability to avoid undesirable 
spectral leakage. Likewise we can 
increase those windows’ sidelobe attenu-
ation, but only by sacrificing desirable 
spectral resolution. This article describes 
a novel window function that enables us 
to control both its 3-dB bandwidth (spec-
tral resolution) and sidelobe attenuation 
(spectral leakage) independently.

The 3-dB bandwidth, sidelobe atten-
uation, and roll-off rate are used to 
measure the performance of windows 
for power spectral density (PSD) esti-
mation [1]–[3]. Improved frequency 

resolution of the estimated PSD can be 
obtained if we reduce a window’s 3-dB 
bandwidth. The sidelobe attenuation 
means the difference between magni-
tude of the mainlobe and the maximum 
magnitude of the sidelobes. The side-
lobe roll-off rate is the asymptotic 
decay rate of sidelobe peaks. Unde-
sirable spectral leakage [4]–[6] can be 
reduced by increasing sidelobe attenu-
ation and roll-off rate. Therefore, an 
ideal window for PSD estimation has 
zero bandwidth and infinite sidelobe 
attenuation such as an impulse func-
tion in frequency domain. 

The conventional windows are able 
to control 3-dB bandwidth or sidelobe 
attenuation by only one parameter in 
general [1], [7]–[12]. Thus, they cannot 
control these two characteristics inde-
pendently. In other words, if we reduce 
a window function’s 3-dB bandwidth, 
the sidelobe attenuation is also reduced, 
and vice versa [5], [6]. This behavior is 
the cause of the tradeoff problem 
between good frequency resolution and 
acceptable spectral leakage in the esti-
mated PSD. The Butterworth window 
does not have this problem because it 
allows control of the 3-dB bandwidth and 
sidelobe attenuation independently.

Butterworth windows are used as 
antialiasing filters to reduce the noise 
in the reconstructed image in previous 
research [13]. They are also used to 
remove the edge effect of the matched 
filter output in pattern matching algo-
rithm [14]. The transfer function of a 
Butterworth filter is adopted as a win-
dow in those applications. However, in 
this article, a portion of the impulse 
response of a Butterworth filter is 
called the Butterworth window and 
its characteristics in PSD estimation 
are analyzed.

BUTTERWORTH WINDOW 
The Butterworth window can be obtained 
by the standard Butterworth filter design 
procedure. Important to us is the fre-
quency magnitude response 0H 1 f 2 0  of a 
Butterworth filter, denoted by [2] and [6]

 |H 1 f 2 | 5 1/Å 1 1 a f
fc
b2N

, (1)

where f  is frequency in hertz. 
The Butterworth filter is character-

ized by two independent parameters, 
3-dB cutoff frequency fc and filter order 
N. The cutoff frequency and order of the 
Butterworth filter serve as parameters 
that control the bandwidth and sidelobe 
attenuation of the Butterworth window. 
The cutoff frequency of a filter has the 
identical meaning with the bandwidth of 
a window. However, the cutoff frequency 
is represented as a half of the bandwidth 
since the bandwidth of a window refers 
to two-sided frequency from negative to 
positive, while the cutoff frequency of a 
filter refers to only one-sided positive 
frequency. Our desired window spectrum 
is identical to the frequency response of 
the Butterworth filter. Thus, the inverse 
Fourier transform is applied to the 
Butterworth filter’s frequency response, 
in (1), to obtain the filter’s impulse 
response, and a portion of that response 
becomes the Butterworth window in the 
time domain.

SIMULATION AND 
PERFORMANCE ANALYSIS 
In our simulation, the frequency and 
impulse responses of Butterworth filters 
are investigated to design the Butterworth 
window by varying the cutoff frequency fc

and filter order N. The sampling frequen-
cy fs is set to 2,048 Hz. The magnitude 
 levels of the impulse response of a 
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Butterworth filter are nearly zero after a 
certain point—almost all information that 
determines the filter’s frequency response 
is in the portion before that zero-magni-
tude point of the impulse response. 
Therefore, it is expected that the suitable 
length of a Butterworth window can be 
determined by only a part of the infinite-
time duration impulse response of a 
Butterworth filter.

Figure 1(a) shows the time-domain 
impulse response h 1k 2  of a unity-
gain low-pass Butterworth filter when 

fc 5 0.75 Hz and N 5 3. In that figure, 
we show the initial positive-only portion 
of the impulse response that becomes 
our desired Butterworth window. The 
2,139th sample of h 1k 2  is the point that 
the magnitude of the impulse response 
of the Butterworth filter becomes zero 
for the first time.

The solid curve in Figure 1(b) is the 
frequency spectrum of the 2,139-sample 
Butterworth window. The 3-dB band-
width and sidelobe attenuation of this 
window are 1.3 Hz and 24.3 dB, respec-
tively. In Figure 1(b), for comparison, we 
show the frequency magnitude response 
of the Butterworth filter as the dashed 
curve. We see that there is no significant 
difference between the magnitude 

response of the Butter worth filter and 
the spectrum of the Butterworth win-
dow. Therefore, a suitable length of the 
Butterworth window may be considered 
to be up to the point where the magni-
tude of the impulse response of filter 
becomes zero for the first time.

Based on the order N, the sampling 
frequency fs, and the cutoff frequency fc 
of the Butterworth filter, we have empiri-
cally determined the suitable lengths of 
the Butterworth windows to be those 
given in Table 1. Here the :x; notation 
means the integer part of x.

The frequency characteristics of 
Butterworth windows with fc 5  0.75 Hz 
are shown in Table 2. The sidelobe atten-
uation is increased from ten to 30.4 dB 
as the filter order is increased from one 
to five, while the 3-dB bandwidth is fixed 
at about 1.5 Hz.

The PSD of an example signal is esti-
mated by Butterworth windows to con-
firm the performance. The signal x 1t 2  
used for our simulation is

x 1t 2  5  0.84cos 12p # 52 # t 2
1  0.8cos 12p # 65.5 # t 2
1  0.3cos 12p # 85 # t 2
1  1.1cos 12p # 105 # t 2  

1 0.35cos 12p # 140 # t 2
1 0.98cos 12p # 159 # t 2
1  0.6cos 12p # 174 # t 2
1  0.8cos 12p # 190 # t 2  

1  cos 12p # 205 # t 2 .  (2)

The solid lines in Figure 2(a) show 
the ideal PSD of x 1t 2 . The dotted curve 
in Figure 2(a) shows the estimated PSD 
of a 2,139-sample rectangular windowed 
x 1t 2 , using Welch’s method [15], where 
that window’s insufficient sidelobe 
attenuation (spectral leakage) produces 

[FIG1] Butterworth filter and window: (a) filter impulse response and window 
function and (b) the filter magnitude response and window spectrum.
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[TABLE 1] SUITABLE LENGTHS 
OF BUTTERWORTH WINDOWS 
(FS = SAMPLING FREQUENCY, 
FC = CUTOFF FREQUENCY).

FILTER 
ORDER, N

WINDOW LENGTH 
(SAMPLES)

1 j0.660 # fs

fc
k

2 j0.705 # fs

fc
k

3 j0.784 # fs

fc
k

4 j0.890 # fs

fc
k

5 j1.005 # fs

fc
k

[TABLE 2] FREQUENCY CHARACTERISTICS OF THE BUTTERWORTH WINDOWS.

FILTER 
ORDER

3-DB 
BANDWIDTH

SIDELOBE 
ATTENUATION ROLL-OFF RATE

1 1.5 Hz 10.0 dB

212 dB/OCT.

2 1.4 Hz 18.2 dB

3 1.3 Hz 24.3 dB

4 1.3 Hz 28.8 dB

5 1.3 Hz 30.4 dB
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false spectral components, particularly 
on either side of a relatively high-level 
ideal PSD spectral component.

Figure 2(b) shows the estimated 
PSDs of x 1t 2  using various 2,139-sam-
ple Butterworth windows, where we see 
that reducing the cutoff frequency and 
increasing the order can reduce spec-
tral leakage without the undesirable 
spectral mainlobe broadening (loss of 
resolution) experienced by the conven-
tional window functions. It means the 
tradeoff problem between resolution 
and spectral leakage is solved. This ben-
eficial behavior is illustrated in Table 3, 
where Butterworth windows are com-
pared to the conventional window func-
tions. In that table, we see that 
Butterworth windows can increase 
their sidelobe attenuation without the 
undesirable mainlobe broadening 
exhibited by the conventional window 
functions. Reference [16] provides spec-
tral plots comparing Butterworth win-
dows to the conventional window 
functions in Table 3.

IMPLEMENTATION ISSUES 
The computational time of PSD  ■

estimation is not related to window 
type, but rather the window length 
and estimation method. So Butter-
worth windows have the same compu-
tational workload as the conventional 
window functions.

To use the computationally effi- ■

cient radix-2 fast Fourier transform 
algorithm, we suggest that the time-
domain samples of Butterworth win-
dow should be zero padded to make 
the window length an integer power 
of two. As an alternative to zero pad-
ding, we can restrict the Butterworth 
window’s fc cutoff frequency to be

 fc 5
Kfs

2M11, (3)

which leads to Butterworth windows that 
are 2M in length, where K is one of the 
scaling constants from Table 1, and M is 
an integer. 

Because Butterworth windows are  ■

not symmetrical, any specialized spec-
tral analysis scheme that requires the 
imaginary part of a window function’s 

spectrum to be all zero 
will not work with the 
Butterworth windows.

CONCLUSIONS
We’ve shown that the 
Butterworth window can be 
obtained by the convention-
al Butterworth filter design 
procedure. This window is 
able to control the 3-dB 
bandwidth and sidelobe 
attenuation independently 
by two parameters, the cut-
off frequency and the order 
of the filter. As such, the 
sidelobe attenuation can be 
varied even if the 3-dB 
bandwidth is fixed, and vice 
versa. Therefore the tradeoff 
problem between the fre-
quency resolution and spectral leakage in 
the estimated PSD, unavoidable with the 
conventional windows, can be solved by 
the Butterworth window.
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[TABLE 3] COMPARISON OF FREQUENCY 
CHARACTERISTICS.

WINDOW
3-DB 
BANDWIDTH

SIDELOBE 
ATTENUATION

RECTANGULAR 0.879 Hz 13.3-dB

TRIANGULAR 1.270 Hz 26.5 dB

HANNING 1.367 Hz 31.3-dB

KAISER a 5 2 0.980 Hz 18.5 dB

a 5 4 1.172 Hz 30.4 dB

CHEBYSHEV b 5 1 0.890 Hz 20.1 dB

b5 2 1.172 Hz 40.5 dB

BUTTERWORTH
(fc 5 0.439 Hz)

N 5 2 0.793 Hz 18.2 dB

N 5 3 0.740 Hz 24.3-dB

N 5 4 0.731 Hz 28.8 dB

BUTTERWORTH 1N 5 4 2 fc 5 0.439 Hz 0.731 Hz 28.8 dB

fc 5 1.500 Hz 2.815 Hz 28.8 dB

fc 5 2.500 Hz 4.720 Hz 28.8 dB

[FIG2] Ideal and windowed PSD: (a) rectangular windowed and ideal PSDs and 
(b) PSDs using various Butterworth windows.
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of which are donating hardware and 
some funding. “We have no intellectual 
property. Everything is open-source. 
We’re not allowed to patent anything. 
Companies like that; it makes it easier 
to collaborate with them.”

WHERE IS EVERYBODY?
Has anyone found anything? Nothing 
has been confirmed, but there have been 
some false terrestrial alarms and artifi-
cially produced extraterrestrial signals.

Probably the best known signal picked 
up by SETI researchers so far was at Ohio 
State in 1977 when they received what 
became known as the “Wow!” signal. As 
an Ohio State astronomer was checking 
printouts, he found a sharp, clear signal 
that even turned on and off during the 
period it was observed. The astronomer 
wrote “Wow!” in the margin of the print-
out. But the signal was never heard again.

Why wouldn’t aliens respond to the 
signals we have already been broadcast-
ing for years?

Today, some SETI scientists are less 
certain about the narrowband approach 
to the search for alien civilizations.

Shostak says that several years ago, 
when wideband techniques, such as 
spread spectrum, were coming into wide 
use, SETI scientists began to wonder if 
aliens were sending out spread-spec-
trum signals. “In which case, we’re not 
going to find them.” While the wideband 

issue continues to be a concern, he 
thinks there might still be a very nar-
rowband component to the signal just to 
get your attention.

Shostak notes that we have been 
broadcasting seriously into space for 
maybe 70 years and that means those 
early broadcasts are 70 light years out. 
“So, if you’re running SETI experiments 
today and looking for responses, then the 
aliens can’t be more than 35 light years 
away. You need enough time for ‘Howdie 
Doody’ to get to them and for them to 
get back to us.” Shostak estimates those 
parameters give us access to a couple of 
thousand stars at most—out of a couple 
of hundred billion stars in the galaxy.

And while most astronomers are 
interested in finding other planets, 
Shostak believes that recent reports 
from European astronomers identifying 
32 new planets orbiting stars outside 
our solar system doesn’t improve the 
chances that we’ll find intelligent life on 
those planets. “The number of stars in 
the Milky Way is on the order of 100 bil-
lion. So another 32 planets doesn’t 
mean much to the SETI community.”

“What you want to know,” he says, “is 
what fraction of these planets are most 
like Earth. Unfortunately, these planets 
are never like Earth because those are 
hard to find. It will take a couple of years 
to find Earth-like planets, but within 
about a thousand days [by approximately 

the end of 2012), we will know what 
 percent of stars have planets that are sort 
of like Earth, with liquid water and atmo-
spheres. That’s what the Kepler mission is 
designed to do—find Earth-like planets”

WHAT’S NEXT?
The search goes on. In addition to the 
vastly improved radio searches—mainly 
the ATA—SETI is looking for signals that 
might be sent at visible wave lengths or 
in the infrared. Exp eriments at 
UC-Berkeley at Santa Cruz, Berkeley, and 
Harvard are using relatively large, con-
ventional mirror telescopes to hunt for 
very brief flashes of light (presumably 
from high-powered lasers) that other 
civilizations might be beaming our way.

At the same time, Dr. Jill Tarter, the 
director of the SETI Institute and the 
winner of the 2009 Technology, Enter-
tainment, and Design Award, says she 
plans to open-source the ATA’a detection 
algorithms to advance the search so en-
gineers around the world can help im-
prove them and, in the process, develop 
a new generation of SETI enthusiasts.

In fact, Tarter has a wish list that 
includes a massive outreach to grow the 
TeamSETI network, including finding 
and recruiting engineers with expertise 
in digital signal processing. Another item 
high on her list is funding—to acquire 
additional telescopes for the Allen array.

[SP]

[spotlight REPORT] continued from page 15
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“folk theorem” in the radar 
community states that the 

phased array (PA) maxi-
mizes the signal-to-noise 
ratio (SNR) at a given 

focal point over the class of possible 
active arrays. In this article, we prove 
this theorem under various conditions. 

RELEVANCE
Active arrays are widely used in many 
sensing applications, including radar, 
sonar, and medical imaging. It is often 
stated without proof that the PA maximiz-
es the SNR at a given focal point over the 
class of possible active arrays. The proof 
here of this statement, under various con-
ditions, provides new insight into the use 
of active arrays in diverse sensing applica-
tions. Courses that may benefit from this 
article include array signal processing, 
radar, sonar, and medical imaging. 

PREREQUISITES
It is assumed that the reader is familiar 
with basic linear algebra and optimization 
principles and has some array signal pro-
cessing background. 

PROBLEM STATEMENT
Consider a transmit array with N  sensors 
in an active sensing application. Without 
loss of generality, we focus on radar appli-
cations with antennas as sensors. We wish 
to determine the transmit strategy that 
maximizes the power of the signal at a 
focal point under the constraint that the 
maximum power each antenna can trans-
mit is c.

NARROWBAND SCENARIO WITHOUT 
PROPAGATION ATTENUATION
Let 

a 5 3e2jf1 c e2jfN 4T (1)

be the steering vector of the array for the 
given focal point of interest, which deter-
mines the phase shifts 5fn6n51

N , where 
1 # 2T  denotes the transpose. Let xn 1t 2
denote the signal emitted by the nth 
antenna (n 5 1, c, N ). Then the power 
of the signal at the focal point is 

a*Ra, (2)

where 1 # 2 * denotes the conjugate trans-
pose and the 1k, n 2 th element of R is 
defined as 

Rkn 5 E 3xk 1t 2xn
* 1t 2 4. (3)

So maximizing the SNR under the ele-
mental power constraint is equivalent to 

 max
R$0

a*Ra s.t. Rnn # c, n 5 1, c, N,

 (4)

where c denotes the maximum elemen-
tal power allowed and R $ 0 means 
that R is a positive semidefinite matrix. 
(We could also consider a total power 
constraint, such as tr 1R 2 # Nc , where 
tr 1 # 2  denotes the trace of a matrix, but 
the elemental power constraint is 
more practical.) 

To solve (4), we note that 

a*Ra # lmax 1R 2 y a y 2 # tr 1R 2N # N 2c,

 (5)

where y # y  denotes the Euclidean norm of 
a vector. The upper bound in (5) is 
achieved by 

R 5 c aa*, (6)

which satisfies the constraint ( Rnn 5

c,4n 2  and therefore is the optimal 
design. Because (6) corresponds to a 
PA, the proof of the theorem is con-
cluded. Furthermore, it follows from 
(5) that for a maximum-SNR design, 
all equalities in (5) must hold; in par-
ticular, we must have lmax 1R 2 5 tr 1R 2

so that rank 1R 2 5 1. This observation 
implies that the optimal-SNR PA design 
in (6) is the unique solution to (4) 
(modulo a common phase shift of all 
elements of a).

WIDEBAND SCENARIO WITHOUT 
PROPAGATION ATTENUATION
In this case, the signal at the focal point 
is

x1 1t 2 f1 2 1c1 xN 1t 2 fN 2 , (7)

where, for a calibrated array and a speci-
fied focal point, the delays 5fn6n51

N  are 
known. Therefore, the power at the focal 
point is 

E c `a
N

n51
xn 1t 2 fn 2 `

2 d . (8)

Maximizing (8) with respect to 5xn 1t 2 6 ,
under the constraint that E 3 0 xn 1t 2 0 2 4# c,
looks like a rather different problem from 
(4), but in actuality it is quite similar. To 
see this, let 

u 5 31 c 1 4T, (9)

and

Gkn 5 E 3xk 1t 2 fk 2xn
* 1t 2 fn 2 4. (10)

Then the problem is 

max
G$0

u*Gu s.t. Gnn # c, n 5 1,c, N,

 (11)

which has the same form as (4). 
Consequently, the solution to (11) is 
G 5 cuu* or in terms of the signals 

xn 1t 25 s 1 t1fn 2 , n 5 1, c, N, (12)

where s 1t 2  is any stationary signal with 
power equal to c. This proves the fact 
that, once again, the PA is SNR opti-
mal; the maximum achievable SNR is 
still N 2c.

The Phased Array Is the Maximum SNR Active Array

A
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NARROWBAND SCENARIO WITH 
PROPAGATION ATTENUATION
In this case, 

a 5 3r1e
2jf1 c rN e2jfN 4T, (13)

where r [ C  (n 5 1, c, N ) are the 
attenuation coefficients, and the optimi-
zation is still (4). Let Q be a square root 
of R, that is 

R 5 Q*Q. (14)

Using Q, we can reformulate the prob-
lem in (4) as 

max
Q
yQa y 2, y qn y 2 # c, n 5 1, c, N,

 (15)

where 5q n6  are the columns of Q:

Q 5 3q1
c qN 4. (16)

Because 

yQa y 5 ga
N

n51
rne 2jfnqn g

# a
N

n51
|rn| y qn y

# !ca
N

n51
|rn|, (17)

it follows that 

a*Ra # c aa
N

n51
|rn|b2

. (18)

The upper bound in (18) is achieved at 

R 5 c £
e2j1f11c12

(
e2j1fN1cN2

§ Se j1f11c12 ce j1fN1cN2 T,
 (19)

where rn 5 |rn|e2jcn , n 5 1, c, N .
Furthermore, the optimal R  above is 
unique, which can be seen by using the 
fact that the first inequality in (17) 
becomes equality if and only if the vectors 
5qn6  are parallel to one another. 

Evidently, the result proved for this 
narrowband with attenuation case is 
more  general than the one presented 
for the narrow  band without attenuation 
scenario, to which it reduces for rn 5 1
(n 5 1, c, N ). However, we preferred 
to prove these results separately because 
the proof for the narrowband without 

attenuation case is simpler, yet stronger 
than the one above: in particular, the 
proof for the narrowband without atten-
uation case can deal with the constraint 
tr 1R 2 # Nc without any modification, 
unlike the proof above. 

WIDEBAND SCENARIO WITH 
PROPAGATION ATTENUATION
The power of the signal at the given focal 
point is now 

E c `a
N

n51
rn xn 1t 2 fn 2 `

2 d . (20)

Therefore, the maximum-SNR design 
problem is, analogously to (11) 

max
G$0

v*Gv s.t. Gnn # c, n 5 1, c, N,
 (21)

where 

v 5 3r1
c rN 4*. (22)

The proof for the narrowband with attenu-
ation case then implies that the maximum 
possible power is equal to 

c aa
N

n51
|rn|b2

, (23)

and that this power is achieved by the PA 

xn 1t2 5 e jcns 1t 1 fn 2 , n51, c, N,

 (24)

where E 3 0 s 1t 2 0 2 45 c (otherwise the sta-
tionary signal s 1t 2  can be arbitrarily chosen). 

WHAT WE HAVE LEARNED
In many active sensing applications, 
such as in radar, the SNR is critical. The 
analysis above sheds some light on the 
usefulness of PA when SNR is the main 
concern. In the presence of strong clut-
ter and jammer, however, the SNR may 
not be the most critical factor and mul-
tiple input multiple output radar, which 
can transmit via its antennas multiple 
probing signals that are quite different 
from each other, is likely to play an 
important role in performance enhance-
ment [1]–[3].
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[best of THE WEB]
H.J. de Wind, J.C. Cilliers, and 
P.L. Herselman

DataWare: Sea Clutter and 
Small Boat Radar Reflectivity Databases

I
n this issue, “Best of the Web” pres-
ents online radar reflectivity databas-
es, which are free of charge to the 
international research community. 
Databases such as these are used for 

the characterization of interference 
(including noise, sea clutter and land 
clutter, among others) in radar systems, 
and the development of signal processing 
techniques that reduce the detrimental 
effects of this unwanted interference. The 
data can also be used for the development 
and evaluation of signal processing tech-
niques aimed at detecting and tracking 
man-made objects by separating targets 
from interference based on Doppler and 
amplitude characteristics. These signal 
processing techniques include moving 
target indication (MTI), pulse-Doppler, 
space-time adaptive processing, track-be-
fore-detect (TkBD), and constant false 
alarm rate (CFAR) processing.

The databases described in this col-
umn are specifically designed to sup-
port  continued development of 
statistically accurate sea clutter models 
and radar detection and tracking 
schemes used in a maritime environ-
ment. Statistical models of sea clutter 
as well as the performance of the detec-
tion and tracking schemes are highly 
dependent on environmental condi-
tions, the geometry of the radar deploy-
ment site relative to the area of interest, 
and the radar system operating parame-

ters. Consequently, it is of paramount 
importance that the required database 
contains sea clutter data recorded with 
varying geometries, under varying envi-
ronmental conditions, with a range of 
radar system parameters and targets of 
interest performing various maneuvers 
in this environment.

Two databases that meet the above-
mentioned requirements are available to 
the international research community. 
The McMaster Intell igent PIXel 
Processing Radar (IPIX) database was 
published in 2001 and the Council for 
Scientific and Industrial Research (CSIR) 
database, published in 2007. Although 
these databases still only cover a limited 
set of environmental conditions, relative 
geometries, radar characteristics, and 
targets of interest, they already contain a 
significant amount of suitable data.

IPIX DATABASE
In 2001, McMaster University in Ha -
milton, Canada published a set of sea 
clutter radar data on the Web. This data-
base can be found at the following two 
addresses:
http://soma.crl.mcmaster.ca/ipix/ 
http://soma.mcmaster.ca/ipix.php.

MOTIVATION FOR 
RECORDING THE DATA
The study conducted by the Cognitive 
Systems Laboratory at McMaster Uni-
versity involved the effects of sea state 
and radar orientation with respect to 
wave direction on amplitude and fre-
quency modulation and on the width 
and shape of its short-time Fourier 
transform [1].

MEASUREMENT TRIALS
The available data were recorded during 
two measurement trials. The first was 

in November 1993 near Dartmouth, 
Nova Scotia, and the second was in 
1998 in Grimsby, on the shore of Lake 
Ontario. The first trial focused on 
obtaining data sets of sea clutter only. 
During the second trial, the focus was 
specifically on the presence of known 
floating objects of various sizes. The 
data recorded during both trials were 
measured with the McMaster IPIX radar, 
a fully coherent X-band radar with 
 features such as dual transmit/receive 
polarization, frequency agility, and 
stare/surveillance mode [2]. This data-
base has been used extensively for sea-
clutter characterization [3] by the inter-
national radar community, with the 
number of publications that reference 
this database exceeding 200.

CURRENT LIMITATIONS
As mentioned earlier, the IPIX database, 
however, only covers a limited set of 
environmental conditions, relative geom-
etries, and radar characteristics. The 
range from the radar is, for example, 
limited to 500–8,000 m and the grazing 
angle is limited to 0.2–3.55. Another lim-
itation to the development of detection 
and tracking algorithms is the lack of 
radar reflectivity data and geometric 
information for maneuvering maritime 
vessels. The environmental conditions, 
such as the wind and wave conditions, 
are only supplied for one measurement 
trial and are only provided in raw format.

SUPPORTING RESOURCES 
ON THE WEB SITE
The Web site does not only contain the 
data, but it also has supporting informa-
tion, such as the radar parameters, a 
radar systems tutorial, a list of publica-
tions that references the database, and a 
page for frequently asked questions. 

Please send suggestions for Web 
resources of interest to our readers, 
proposals for columns, as well as 
general feedback, by email to Dong 
Yu (“Best of the Web” associate 
editor) at dongyu@microsoft.com.
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Figures that give a quick overview of the 
content of the data set are provided for 
each  data set. The recorded environmen-
tal conditions are provided in raw for-
mat, but only for the first measurement 
trial. The Web site also contains maps 
and pictures of the deployment sites.

CSIR DATABASE
In 2006 and 2007 the Defence, Peace, 
Safety, and Security Unit of the CSIR in 
Pretoria, South Africa, conducted two 
sea-clutter measurement trials to address 
some of the limitations of the IPIX data-
base. These data were made available on 
the Web at the end of 2007 for the first 
trial and in the middle of 2009 for the 
second trial as an additional data source 
to the IPIX database. This database can 
be found at
http: / /www.csir.co.za / small_ boat_

detection/.

MOTIVATION FOR 
RECORDING THE DATA
The data available in the CSIR database 
were recorded with the purpose of aiding 
in the development of a persistent ubiq-
uitous maritime surveillance system 
using radar as the primary sensor. This 
database can be used to address several 
of the radar-related signal processing 
topics mentioned earlier, but more spe-
cifically those related to the detection 
and tracking of small boats in a mari-
time environment, including the littoral. 
To develop detection and tracking tech-
niques applicable to the maritime envi-

ronment, it is essential to characterize 
the sea clutter and to characterize the 
return from objects of interest. Esti-
mation theory can be applied, for exam-
ple, to determine the amplitude statistics 
and Doppler characteristics of the sea 
clutter and to develop a process to per-
form these estimations in real time. 
Detection theory can be applied to dis-
cern between the return from sea clutter 
and the return from other objects. These 
objects may include targets of interest, 
such as small boats, or objects that are 
not of interest (such as birds). In a non-
stationary environment, detectors are 
designed to carry out this process adap-
tively to obtain a CFAR. Declared detec-
tions that are deemed to be of interest 
(based on position, radial speed, or 
amplitude, for example) may be extract-
ed from the output of the detection algo-
rithm whereby spurious and interfering 
signals are discarded. Tracks are then 
formed on the detections of interest. 
This tracking involves the association of 
detections with existing tracks or creat-
ing new tracks with detections that can-
not be associated with any existing track, 
smoothing/filtering of all the tracks, 
estimating the speed and heading of the 
targets, predicting the new position, and 
providing estimates on the errors in 
these predictions. Another approach that 
can be evaluated on the available data is 
the concept of tracking a signal before it 
is declared as a target. In this approach, 
called TkBD, the sensor data originating 
from a tentative target are integrated 

over time. This integration may yield 
detections in cases where the ampli-
tude return from the target at any par-
ticular time instance is such that, 
when compared to the sea clutter 
amplitude return, detections will not 
be obtained with more prevalent detec-
tion algorithms.

The foregoing discussion demon-
strated that a large number and variety 
of signal processing techniques [4] can 
be applied to and evaluated on the data 
available in the CSIR database. Example 
images of detection techniques evaluated 
on data sets contained in the CSIR data-
base are shown in Figure 1.

MEASUREMENT TRIALS
The data contained in the CSIR data-
base were recorded during two mea-
surement trials. Both were in the 
Western Cape, South Africa. The first 
was in July 2006 at the Overberg Test 
Range near Arniston [5] and the second 
was on Signal Hill in Cape Town [6]. A 
significant library of both sea clutter 
data and radar reflectivity data from 
various small maritime vessels were 
recorded. The radar used during the 
first trial was a coherent radar cross sec-
tion measurement facility with an 
operating frequency from 6.5 GHz to 
17.5 GHz transmitting pulsed continu-
ous wave waveforms, with a pulse-to-
pulse frequency agility bandwidth of 
500 MHz. An experimental X-band, 
pulse-Doppler radar was used during 
the second trial.

In addition to the radar data, the 
weather data (wind, temperature, and 
rain) for the area of interest were 
obtained from the South African weather 
services and were recorded at a local 
weather sensor at the deployment site 
(Table 1). The local wave direction, signif-
icant wave height, and wave period were 
logged with wave buoys deployed close to 
the deployment site. A differential pro-
cessing global positioning system (GPS) 
receiver (3–5 m absolute accuracy) was 
installed on the cooperative vessels used 
during the measurement trials, to enable 
the estimation of ground truth tracks of 
these vessels for use in processing, specif-
ically for the evaluation of detection and 

Helping to improve the radar detection accuracy. Cartoon by Tayfun Akgul 
(tayfun.akgul@ieee.org).

_________________________

_______
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 tracking algorithms. Video cameras were 
mounted alongside the radar antenna. 
These cameras were aligned with the 
boresight of the radar antenna. The video 
output of both cameras (wide and narrow 
fields of view) was recorded to comple-
ment the radar reflectivity data, especially 
when used as an aid in explaining phe-
nomena observed in the radar data. All 
the above-mentioned peripheral data 
were included in the data sets available in 
the database (video available for both, but 
only published for the second trial).

CURRENT LIMITATIONS
The data available from this database is 
a useful addition to the IPIX database 
as it extends the set of environmental 
conditions covered (higher sea states 
and wind speeds), the maximum range, 
and grazing angles. In addition, data 
are also available of cooperative 
maneuvering maritime vessels (with 

recorded GPS track) and not only of 
floating objects.

Even this large database only covers 
a limited set of environmental condi-
tions, relative geometry and radar char-
acteristics. The data in this database 
were for example only recorded with 

vertical polarization on both transmit 
and receive (VV). The Defence, Peace, 
Safety and Security (DPSS) operating 
unit of the CSIR is therefore planning 
more measurement trials and will con-
tinue to update this database as new data 
become available.

[TABLE 1] SUMMARY OF RELATIVE GEOMETRY AND ENVIRONMENTAL 
CONDITIONS DURING CSIR MEASUREMENT TRIALS.

OVERBERG SIGNAL HILL

GEOMETRY
RADAR HEIGHT (AMSL) 67 M 294 M
DISTANCE FROM COASTLINE 1.2 KM 1.25 KM
AZIMUTH COVERAGE OF SEA 905 N TO 2255 N 2405 N TO 205 N
GRAZING ANGLES 35 TO 0.35 105 TO 0.35
MAXIMUM RANGE 15 KM 60 KM
ENVIRONMENTAL CONDITIONS
AVERAGE WIND SPEED 0–20 KTS 0–40 KTS
MAXIMUM WIND GUST 40 KTS 60 KTS
PREDOMINANT WIND DIRECTION 1805 N–2705 N 1305 N–1405 N AND 3205 N–3305 N
SIGNIFICANT WAVE HEIGHT 1 M–3.8 M 1 M–6 M
MAXIMUM WAVE HEIGHT 7.31 M 11.26 M
SWELL DIRECTION 1355 N–1805 N 2305 N–2705 N
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[FIG1] In (a)–(f), detections obtained with range-Doppler CFAR and spectral whitening detectors are given.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [148]   MARCH 2010

[best of THE WEB] continued

Even though both databases have 
data sets of antenna scans over a given 
sector, neither have data suitable for 
the development of track-while-scan 
 algorithms for surveillance radars. It is 
 possible to extract sections of data that 
will emulate the effect of scanning, but 
it will not include effects such as inter 
clutter modulation and the influence of 
adjacent azimuth directions on the esti-
mation and detection processes.

SUPPORTING RESOURCES 
ON THE WEB SITE
The Web site provides supporting resourc-
es, such as information on the deploy-
ment sites, radar parameters, images of 
the boats that were used as cooperative 
targets, example data sets, and an  swers to 
frequently asked questions. A summary of 
each data set is also provided for quick 
reference. These summaries consist of an 
overview plot of the data set, a map of the 
GPS track of the cooperative target where 

applicable, a summary of the environ-
mental conditions, radar setup and view-
ing geometry and the date, time, and 
duration of the data set.

CONCLUSION
The continuing development of models, 
detection schemes, and tracking algo-
rithms for the maritime environment is 
highly dependent on the availability of 
suitable data. Hopefully, in the future, 
the free exchange of data from initiatives 
such as the IPIX and the CSIR databases 
will support further research and broad-
en the understanding of the complex 
subjects contained in this field.
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multidisciplinary field. Together with the 
contributions from other disciplines, 
 signal processing forms an integral yet 
fundamental tool for developing rich sets 
of scientific and engineering techniques 
to address a wide range of critical soci-
etal needs including health care, energy 
systems, sustainability, transportation, 
visualization,  entertainment, education, 
communication, collaboration, defense, 
and security. The techniques established 
are frequently inspired by diverse scien-
tific disciplines. As I was contemplating 
the content of this editorial, I was also 
attending the Neural Information 
Processing Systems (NIPS) Workshop, 
listening to a keynote speech by a promi-
nent signal processing expert. The topics 
were cognitive radar/radio and nonlinear 
filtering, pertinent to how human brains 
(visual, auditory, and motor cortex) per-
form similar styles of computations. The 
cognitive radar/radio system design as 
presented also demonstrated the leading 

role that signal processing plays in fos-
tering optimal design methodologies of 
complex engineering systems with “per-
ception,” adaptation, action, and feed-
back from the environment. While NIPS 
is known to be a premier conference for 
machine learning and neural network 
researchers, signal processing is a fre-
quent subject throughout the conference 
as I noted, not only as a technical meth -
odology but also as an important applica-
tion area covering diverse information 
sources such as audio, speech, image, 
video, and biomedical signals. 

In light of the expanded focus of inter-
est that considerably spans multidisci-
plinary areas in terms of both “signal” 
types and “processing” styles, this maga-
zine has a more challenging role to play 
for educating the readers in bridging the 
knowledge gap across  various technical 
subfields. In addition, because the contri-
butions of signal processing are often in 
conjunction with other scientific and 

engineering disciplines, bridging  the gap 
with technical fields not traditionally 
associated with signal processing is also 
becoming important. To address this 
challenge, the Pub lications Board of our 
Society recently established overview 
articles in each of the Society’s transac-
tions while mandating IEEE Signal 
Processing Magazine with the major role 
of publishing tutorial articles educating 
the readers with little background in a 
given field but with main background in 
the related fields. The magazine’s tutorial 
articles serve the purpose of what can be 
best characterized as cross-fertilization 
over multiple technical subareas.

We warmly welcome contributions 
from you with the tutorial articles meet-
ing the new challenges in face of the 
new, expanded focus of interest of our 
Society. [SP]

[from the EDITOR] continued from page 2

_________
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Gene Frantz, Jörg Henkel, 
Jan Rabaey, Todd Schneider, 
Marilyn Wolf, and Umit Batur

Ultra-Low Power Signal Processing

T
his IEEE Signal Processing 
Magazine (SPM) forum dis-
cusses the latest advances 
and challenges in ultra-low 
power (ULP) signal process-

ing (SP). The forum members bring their 
expert insights to issues such as design 
requirements and future applications of 
ULP SP systems. The invited forum 
members are Gene Frantz (Texas 
Instruments), Jörg Henkel (Karlsruhe 
Institute of Technology), Jan Rabaey 
(University of California at Berkeley), 
Todd Schneider (ON Semiconductor), 
and Marilyn Wolf (Georgia Institute of 
Technology). The moderator of the 
forum is Umit Batur (Texas Instruments). 
Our readers may agree or disagree with 
the ideas discussed next. In either case, 
we invite you to share your comments 
with us by e-mailing batur@ti.com or 
spm.columns.forums@gmail.com.

Moderator: Let’s first start by defining 
our topic. What does “ULP SP ” mean? 
What specific requirements should a 
signal processing system satisfy to be 
called an “ULP” system?

G. Frantz: This is a fun question as it 
means different things to different peo-
ple. I wrote an internal white paper on 
this topic a couple of years ago so we 
could, as a company, minimize the con-
fusion on what it means. Here is an 
excerpt from the paper:

The easy way to differentiate ULP from 
other power aware concepts is to cre-
ate a chart on the priority order of the 
basic aspects: performance, price and 
power dissipation. Here is a descrip-
tion of my version of that chart. 

High-performance ■  devices are 
those where performance is the 

primary priority, if not the only 
priority. 

Low-power ■  devices are those 
where, given no performance is sacri-
ficed, the focus is on how much the 
power dissipation can be reduced.

ULP ■  devices are those where, given 
the absolute minimal power dissipa-
tion is achieved, how much perfor-
mance is left? Then the focus is 
on performance.
So, I see ULP as a design philosophy 

rather than a specification.
J. Henkel: An ULP signal processing 

system should address low power con-
sumption at all levels of abstraction i.e., 
it should apply the latest power efficient 
silicon technology to start with, it should 
utilize the most advanced power man-
agement techniques at OS-level, and, 
don’t forget, the application itself should 
be trimmed to low power consumption. 
Especially algorithmic transformations 
at the application level can be very power 
efficient in signal processing systems. In 
summary, exploiting the potentials in 
power savings at each (or at least many) 
level makes to my mind a real ULP sys-
tem. Therefore, designing an ULP signal 
processing system is a combined hard-
ware/software problem.

G. Frantz: All aspects of a system 
should be involved: process, transistor, 
gate, hardware architecture, software, and 
system. 

T. Schneider: We, at ON Semi-
conductor, design single-chip digital SP 
(DSP) systems that are almost always bat-
tery powered, so for us “ULP signal pro-
cessing” means meeting demanding 
battery lifetime constraints while simulta-
neously accomplishing a demanding signal 
processing task. Thus, the prime metric is 
really one of efficiency: in a given, real 
world application, minimize the power 

consumed by the DSP system for a given 
task. We use mW/MIPS, where MIPS are 
the actual instructions being executed for 
application and mW is the measured power 
consumption of the DSP system.

Specific applications have constraints 
driven by desired battery lifetimes and 
batteries that are used. As an example, a 
power-consumption constraint of 1 mW
or less is common for hearing aids. 
Designers strive to get as much signal 
processing and the best overall audio 
quality they can within this power bud-
get. Within this power budget, developers 
are expected to implement features like 
adaptive feedback reduction, dynamic 
range compression, noise reduction, and 
parameter selection based on environ-
mental monitoring. For some smaller 
hearing aid applications, this power con-
straint can drop to as low as 500 uW. 

The extreme end of the ULP signal 
processing we address is signal pro cessing 
in implantable systems such as pace-
makers, implantable defibrillators, 
cochlear implants, and neurostimula-
tors. Typical functions included in an 
implantable device are low-pass filter-
ing, level measurement, and threshold 
detection. Some implantable devices 
are designed for battery lifetimes of ten 
years with an average power consump-
tion of less than 30 uW, including the 
therapy. This corresponds to a current 
of 10 uA from a typical battery. With 
the current required to deliver therapy, 
only a few uA average current remains 
for all of the electronics. Of course, 
static current is also key in implantable 
applications and minimizing this 
requires a tradeoff to be made between 
threshold voltage, supply voltage, and 
operating frequency.

To achieve the lowest possible 
dynamic power consumption, we strive 
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to operate the signal processor(s) at the 
lowest possible operating voltage. This 
typically means minimizing the clock 
rate, which necessitates application 
driven design.

In our experience, the largest power 
savings can be derived from clever design 
of the signal processing algorithm(s) and 
from clever design of a system architec-
ture onto which this algorithm can be 
efficiently mapped. In the late 1990s, we 
pioneered a novel approach that com-
bines a flexible, software-programmable 
DSP with a more fixed function, micro-
coded “accelerator.” This architecture 
recognizes that many DSP algorithms 
consist of a “vector number crunching” 
portion and a “control path/side-chain” 
portion. By partitioning an algorithm 
into these two portions with an efficient 
mapping, clock rates can be minimized. 
This allows the supply voltage to be min-
imized, which reduces power consump-
tion. Properly executed, this approach 
provides an approximately linear reduc-
tion in power consumption. This 
approach makes a tradeoff between flexi-
bility and power consumption, which 
strikes a compromise between “hard 
code everything in logic” (lowest possible 
power with zero flexibility) and “make 
everything programmable” (highest 
power and most flexibility). To fully real-
ize the benefits of this approach, the two 
processing units must be run in parallel, 
which can increase programming com-
plexity. Of course, there are applications 
(like implantables) where the power con-
straints are so stringent that there is no 
choice but to implement signal process-
ing as fixed-function blocks.

In summary, for us, ULP signal 
processing means a focus on efficient al-
gorithms and application-driven archi -
tectures both seeking to minimize the 
clock rate and operating voltage and 
thus realizing the lowest mW/MIPs in 
the intended application.

J. Rabaey: I tend to take a somewhat 
different tack, and tend to classify systems 
by their energy source or provision. 

ULP systems ■ : self-contained–these 
systems either live off a single battery 
charge for the lifetime of the product, 
or scavenge energy

Low-power systems ■ : battery oper-
ated–need occasional battery replace-
ment or recharge

Powered systems ■ : Performance is 
dominant. Energy-efficiency is impor-
tant for either heat management or 
for cost reduction.
The actual boundaries between these 

different classes are variable depend upon 
the size of the node and the usage pat-
terns. Observe that this definition is 
generic and extends beyond the signal 
processing label.

M. Wolf: I like Jan’s definition, but 
what about devices like radio-frequency 
identification (RFID) that receive energy 
from an antenna?

J. Rabaey: Devices like RFID that 
receive energy from an antenna fall 
clearly under the ULP class. They are 
“perpetual” and harvest electromagnetic 
or magnetic energy.

G. Frantz: I think there is a whole 
family of products of which I call “per-
petual devices” that beg the same ques-
tion. But I think Jan covers it in his 
definition. What I read his definition to 
say is the “power source lasts longer than 
the useful life of the product.”

J. Rabaey: I am perfectly in line with 
Gene on this one.

T. Schneider: We have an internal 
definition (more of a joke really) that we 
call “infinite battery life” that is along 
the same line as Gene’s comment above.
If the device has replaceable batteries 
and the user cannot remember the last 
time they replaced the batteries then the 
device has, in effect, infinite battery life.

Reading these definitions, which are 
more general than mine, I realize that 
many of the applications we address 
have a power source that is predeter-
mined by size, reliability, availability, or 
the fact that it has been historically 
used. This is a hard constraint and ULP 
also means cramming as much process-
ing capability in as possible while living 
within this constraint.

G. Frantz: That is why I call it a philos-
ophy rather than a specification. But, back 
to Jan’s “infinite battery life” rather than 
my “perpetual device,” the problem with 
mine is you can’t patent anything that 
starts with the word “perpetual.”

Moderator: Which signal processing 
applications are driving the need for 
ULP? What are the most important 
tradeoffs in these ULP applications?

J. Rabaey: This is a tough one to 
answer, as there are many options. My 
top choice would be medical applica-
tions. Various wireless monitoring and 
implanted devices are pushing the limits 
on what ULP design is all about. In the 
future, I can see various immersed media 
devices becoming crucial as well. How 
about virtual reality on a mobile?

J. Henkel: I agree with Jan’s points of 
medical and wireless but want to pick up 
his last point and extend it a bit to mobile 
multimedia in general. In a research proj-
ect we are currently conducting, we are 
exploring the low-power (I hesitate to call 
it ULP) design space of a mobile multime-
dia device with respect to impacts on both 
the hardware architecture and the soft-
ware architecture. So far, we ended up 
with a new hardware architecture that 
uses dynamic reconfiguration. On the 
other side, we had to heavily redesign the 
software architecture (in that case, an 
H.264) to exploit the hardware architec-
ture’s low power capabilities by, for 
instance, exploiting a high inherent degree 
of instruction-level parallelism. Coming 
back to the question on the tradeoffs, in 
our case the price to pay is to completely 
redesign the software architecture and to 
develop a novel hardware architecture.

M. Wolf: I think that sensor networks/
cyber-physical systems are an important 
category. For example, people don’t want 
to have to crawl through a building or 
bridge every year to replace the batteries 
in the sensors, which is what they have 
to do right now.

G. Frantz: So, to follow the thread 
above, Jan’s definition (or my rewording) 
of ULP describes what markets it will be 
used. Those markets for which the bat-
teries should last longer than the useful 
life of the product.

I was talking to a friend of mine in 
the world of implants. I suggested that 
implantables needed to be perpetual as 
they needed to last longer than the life 
of the individual. He said that it wasn’t 
true, implants only needed to last ten 
years; not for the life of the human but 
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to  outlast the obsolescence of the tech-
nology. His point was that, independent 
of the battery life, technology needed to 
be replaced at least every ten years, if 
not sooner.

Marilyn’s example of changing batter-
ies in a bridge monitoring application 
gives a different perspective of the mar-
ket. I argue there is another market 
where the product has been buried or 
placed in an unreachable location. For 
example, load cells at the bottom of 
structural columns, under highways, or 
in nuclear plants. 

But to keep it simple, when I am 
asked the question about what market/
product can use ULP, I explain that I 
don’t know. It’s kind of like fishing in a 
new hole: you don’t know what bait to 
use and you don’t know what you’re 
going to catch, but it’s exciting. I believe 
ULP will address new markets we have 
never thought of and that is what makes 
it exciting.

Now to discuss compromises: To 
guarantee the lowest possible power dis-
sipation, one must tradeoff price and per-
formance. Which begs the questions 
“what value does ULP bring to the party?” 
“Will people pay for it?” “How much per-
formance will I need to eliminate?”

J. Henkel: I disagree that ULP is nec-
essarily a question of the price one is 
willing to pay. You can get ULP devices 
quite cheap. An example: a few years 
back I talked to the developers of Texas 
Instruments’ MSP430. Embedded in a 
system it can run for ten to 15 years with 
one battery i.e., without any recharge! 
This, of course, depends on the applica-
tion and assumes that the processor only 
wakes up from time to time to, for 
instance, gather some data and to do 
some simple calculations and finally 
storing some of the data. A simple sys-
tem built with this (or a comparable) 
processor is quite cheap, but according 
to some previous definitions in this dis-
cussion, it is an ULP design. Anyway, I 
agree that one needs to tradeoff perfor-
mance when ULP is required.

G. Frantz: I understand questioning 
price. But my experience has been if you 
choose to make one variable fixed you 
need to tradeoff the other two. In this 

case, we choose to not compromise 
power dissipation, we will find we either 
need to reduce performance at the same 
price or increase price to increase perfor-
mance. I get this from the idea that what 
Moore’s law will continue to give us is 
more transistors. We can either increase 
performance or decrease power dissipa-
tion by adding more transistors. 

Now having said that, Jörg’s prime 
example of where that isn’t the case is a 
good one. And there are many more. So, 
I’ll be glad to not push it any further but 
ask a more interesting question: does 
ULP have perceived value in a product? 
Can a premium be placed on a product 
with a longer battery life?

T. Schneider: I agree with Jan’s point 
about medical, especially implantable 
and body worn (e.g., hearing aids), appli-
cations. However, in applications that 
use wireless, the power savings gained 

through ULP signal processing can 
sometimes be overshadowed by the 
power consumption of the wireless sub-
system. Still, short range wireless appli-
cations like body sensor networks are 
likely to be a future application where 
ULP signal processing will make a differ-
ence. This could evolve into a more gen-
eral category of wearable or (semi)
implantable electronics for both medical 
and recreational purposes.

In the multimedia area, some porta-
ble, body-worn audio designs (e.g., head-
sets and mobile phones) require ULP 
signal processing to make the design via-
ble. In these cases, significant DSP 
resources are devoted to echo cancella-
tion and noise reduction to compensate 
for the mechanical aspects of the device 
(e.g., a small form factor that locates the 
speaker close to a microphone or a 
design that is relies on DSP to compen-
sate for other mechanical or acoustic 

features). Pushing more and more func-
tionality into smaller and smaller devices 
and having them used in a wide range of 
environments is likely to place higher 
demands on ULP signal processing in 
these types of applications.

The most significant tradeoff in my 
experience is flexibility (and therefore 
programmability). Reduced programma-
bility generally means less memory is 
used, which means smaller die. This 
drives lower cost at volume.

Jörg’s point about dynamically recon-
figuring hardware is an interesting one. 
This is one way to gain some flexibility in 
a power-efficient way without resorting 
to a fully software programming system.

In many ULP signal processing appli-
cations, performance tradeoffs are also 
made. These applications will often have 
“just enough performance.” There is lit-
tle or no “headroom” for new features or 
product expansion.

J. Rabaey: Just to address some of 
Todd’s comments: It is indeed true that 
the wireless communication overshadows 
the signal processing budget. However, 
signal processing can help substantially 
to reduce the wireless communication 
power either by reducing the amount of 
data to be transmitted, or by making the 
RX/TX more efficient (in short distance 
wireless, the RX/TX power is way larger 
than the communication power).

With respect to the programmability 
aspect, I fully agree. Fully programmable 
solutions and ULP do not go to gether 
(unless you want to run extremely slow, 
such as the Michigan subthreshold 
 processor). A combination of accelera-
tors, reconfigurable/parameterizable 
modules and a rarely used simple core is 
the best option.

T. Schneider: Jan’s point regarding 
the power reduction via ULP signal pro-
cessing for wireless links is good and I 
completely agree. I was thinking more of 
standards based approaches like LE 
Bluetooth and Zigbee, but these can 
hardly be classified as ULP. 

G. Frantz: We took a chart from 
Berkeley several years ago and added one 
point. The chart showed the amount of 
energy it took to transmit 1-b of infor-
mation through various ways. We added 

FUTURE ULP SYSTEMS 
NEED TO BE ABLE TO 

FLEXIBLY ADAPT AT RUN 
TIME TO ALWAYS 

(OR MOST OF THE TIME) 
RUN AT MINIMUM 
POSSIBLE POWER.
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a point (as I remember) to the chart. 
That point was how much energy it took 
to execute one instruction. The thought 
behind it was that it should be lower 
power to compress a bit then to transmit 
a bit. As I remember, the cost of com-
pressing a bit was several orders of mag-
nitude less then to transmit a bit. We did 
this in 2002, so the data is old. But I 
think the concept is still there. What I 
have tried to do is to change the idea 
from analog to digital (A/D) to analog to 
information (A/I). As we compress (con-
vert) data into information, it will always 
be cheaper to transmit the information 
rather than the data. For example, in a 
security system at my home, the system 
doesn’t need to transmit a picture of me 
as I walk through the house, it just needs 
to send a minimum set of information 
saying what I did.

Moderator: What are the most impor-
tant ULP signal processing design tech-
niques used today in semiconductor 
device fabrication, and processor, sys-
tem, and software design?

M. Wolf: If one is designing an ULP 
system, one arguably doesn’t want any 
software on the ULP device itself.

G. Frantz: On the contrary, the only 
way it will work in the IC world we are 
creating is for it to be programmable, or 
at least configurable, to be viable. I would 
agree, given today’s memory technology, 
you are correct. So I would change your 
words to “how do we make memory ULP 
and nonvolatile.” In fact, there are some 
technologies that might make this possi-
ble in the research labs now. One exam-
ple is the FERAM.

So, let me go back to my first com-
ment on the IC world. At each node we 
are making it more difficult to design 
and tool a new device. Once done, it is 
virtually free to manufacture devices. Jeff 
Bier has predicted that companies like 
Texas Instruments would only be able to 
create a handful of digital chips per year 
due to the prohibitive cost of design and 
tooling. That will force us to a few 
devices that can serve thousands of mar-
kets. My conclusion is that this results in 
programmable platforms on which inno-
vation takes place.

I will make a bold statement and say 
that “ULP devices are not the innova-
tions. They are the platforms on which 
innovation will happen to create a whole 
new world of products.”

With that behind, the areas that most 
need to be dealt with for success in the 
product are: zero power memories, ULP 
wireless communications, energy scav-
enging, and analog. 

M. Wolf: Memory isn’t the only power 
hog in a programmable system—there’s 
the I-box and the datapath. Of course, 
programmability doesn’t necessarily 
mean Turing machine...

G. Frantz: Very good points. I also 
swept by, far too quickly, the concept of 
programmability. There is a spectrum of 
programmability from fixed function to 
infinitely programmable. Somewhere 
between these two extremes we find con-
cepts like configurable and accelerator. 
Even a fixed function processor has two 
instructions (on and off), or should have. 
A lot of fun to be had by all.

J. Rabaey: I tend to agree with Gene 
that for ULP signal processing to be suc-
cessful, a “reusable” platform needs to 
be created. The ad hoc approach does 
not fly. This means that we need to start 
thinking design methodology, libraries, 
reuse strategies, and common concepts. 
Innovation is cool for a while, but does 
not lead to mass impact. This is where 
the true challenge is. Gene’s list is very 
good—I would add some: mechanical 
computing, passive computing, and bio-
inspired processing (just to make it 
more exciting).

M. Wolf: Reusability can come from 
a combination of the host and sensor 
sides. Fancy signal processing, for 
example, can be performed at the host 
after basic data reduction is done at 
the sensor.

T. Schneider: Very interesting answers 
so far . . . the scope has broadened to 
include economic considerations as well 
as methodology and system aspects.

I agree with Jan that the design 
approach is key. I also agree with the 
points made by Gene regarding the eco-
nomic considerations. These together 
imply that one of the most impor-
tant aspects is the partitioning and code-

sign of the system. What portions of the 
device get “hard coded” permanently in 
hardware (for the lowest possible power)? 
Which portions of the device will retain 
some flexibility, through free program-
mability on a processor or via lower-
power options like microcoding an 
accelerator in a ROM? Wise choices will 
lead to a system that will find broad 
application (that as Gene says “will serve 
thousands of markets”); whereas poor 
choices will result in a system that will 
not become a widely used platform.

An additional area that I see as impor-
tant is software/configuration tools that 
provide an efficient and effective means 
of programming deeply embedded paral-
lel systems in the absence of an operat-
ing system (in my opinion, an OS and 
ULP just don’t go together). Ideally, these 
tools must work with a multiprocessor, 
heterogeneous system, and provide close 
to the same efficiency as one could 
achieve with hand coding. This is a chal-
lenge because both partitioning and 
scheduling across multiple compute 
units must be addressed. Without tools 
like this, building complex ULP systems 
will remain a challenge.

Moderator: It seems that hardware/soft-
ware partitioning and codesign present 
important tradeoffs when building ULP 
systems. How do you expect ULP design 
techniques to evolve in the near future to 
address these trade-offs more effectively?

J. Henkel: I agree that HW/SW parti-
tioning is a crucial decision to make 
when it comes to ULP. This decision is 
done at design time. I want to go a step 
further and claim that future ULP sys-
tems need to be able to flexibly adapt at 
run time to always (or most of the time) 
run at minimum possible power. There 
are scenarios that simply cannot be pre-
dicted at design time/compile time and if 
the system would not be able to adapt 
appropriately, it would give away some of 
the potentials in power savings. So, my 
statement is: future design techniques for 
ULP systems need (more than nowadays) 
to provide the ULP system with the capa-
bility of more run-time flexibility (even 
though classic design paradigms teach us 
that flexibility costs power consumption ). 
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G. Frantz: Good point, a significant 
tradeoff will be flexibility versus power 
consumption. But let me replace flexibility 
with a different concept: time to market. I
tell people that my customer wants four 
things from a vendor; a solution that has 
good enough performance, low enough 
cost, low enough power dissipation, and 
the ability to get them first to market. 

In fact, forget the first three, “help 
me get to market first and give me a 
roadmap to cheap.” Note that I said 
“roadmap to cheap” rather than “road-
map to ULP.” At the end of the day, the 
system designer need not have ULP, but 
low enough power to lead the market. 
Flexibility is the key to leading a market.

T. Schneider: Perhaps I am being 
too optimistic, but I believe that with 
all of the activity we see in mainstream 
multiprocessor systems, it is only a 
matter of time before ULP design tech-
niques evolve to support high-level 
assessment of different multiprocessor/
computational unit/reconfigurable 
accelerator design concepts. These tools 
will allow assessment of the tradeoffs 
that are made between communica-
tions/data transfer overhead and the 
power consumption reductions realized 
through parallelization.

To extend Gene’s point, ULP done 
properly is lower cost because an effi-
cient design will typically have fewer 
gates, use less memory, and is therefore 
likely to consume less power and less sil-
icon area. Flexibility is good, but opti-
mizing the approach for very high 
volume ULP applications is the key for 
realizing the cost targets that are typi-
cally required.

Moderator: How mature are the ULP 
design tools that are needed to efficient-
ly and effectively explore all tradeoffs we 
mentioned so far?

G. Frantz: I think this is a simple 
answer: They don’t yet exist. But in case 
I am wrong, can we list the ones we need 
and the ones we already have?

J. Rabaey: Dismal is the right answer. 
There is progress in modeling and simu-
lation (including statistical analysis).
Logic synthesis tools can be adapted to 
serve for instance subthreshold logic 

without to much of a challenge. The rest 
is mostly spreadsheet. We really need 
good exploration tools.

T. Schneider: I agree on all points. 
I’ve seen some tools (and been involved 
in a research project) that studied explo-
ration tools. They worked, but the mod-
els used for power consumption were too 
simplistic to make them useful in real 
applications. For now, experienced 
 systems/chip designers, a good method-
ology for exploring design concepts, and 
spreadsheets are the best we’ve got.

G. Frantz: Let me give a real example 
of the state of our power evaluation tools 
in IC design. We just introduced (in the 
last month or so) a new device that was 
designed specifically for low power. Once 
we got silicon and tested it we found that 
the silicon’s power dissipation was off by 
a factor of two from the design tool esti-
mate. Fortunately it was off by two in the 

right direction. That means we have 
a lower power part than we expected. 
Although this sounds like great news, 
had we known that earlier we might 
have changed how we marketed it and 
given our system customers a greater 
head start on taking advantage of the 
lower power.

Moderator: What are the implications of 
analog versus digital implementations of 
SP algorithms in ULP designs?

G. Frantz: I don’t know that analog 
versus digital changes much at a high 
level. But it does once under the hood. 
ULP digital will get a great portion of its 
advancing by way of lowering the operat-
ing voltage, running slower, and using 
parallel concepts. Analog will not have as 
much of an advantage with lower voltage 
but will get its advantage by using analog 

concepts to do the intensive math opera-
tions. But the old thought that we would 
be able to virtually eliminate analog and 
do everything in digital is dying away and 
we now have the advantage of making 
tradeoffs between digital and analog 
implementation for SP.

As an aside, we have seen digital con-
cepts used to enhance the analog to digi-
tal conversion accuracy. In the same way 
we will begin to see analog concepts used 
to enhance the performance of digital 
circuits. This will be relatively indepen-
dent of whether the task is to increase 
performance or lower power dissipation. 
Of course, this leads to the question of 
what and how do we prepare students for 
this new world of ULP SP .

J. Rabaey: I essentially agree with 
Gene. It seems that for a number of SP  
functions (such as spectrum analysis), 
analog, and “mechanical” implementa-
tions can be more efficient than digital as 
long as the required accuracy is low (the 
number that I have often seen is around 
6-b of accuracy as the transition point). 
When you need higher resolution/accu-
racy, you need to go digital. We have 
gradually migrated towards believing 
that digital is always the better way, but 
that is simply not true. Analog can often 
be very efficient, but don’t ask accuracy.

Passive solutions don’t take any 
energy at all!

Now here is where the opportunity 
lays, as Gene has perfectly pointed out: a 
combination of low-accuracy analog with 
higher resolution providing digital. The 
latter can still scale for a bit in terms of 
energy efficiency. The former benefits 
from the complex functionality that can 
be realized with few devices. And yes, this 
begs the next question.

T. Schneider: I agree with the points 
made above. In my experience, if you can 
“tolerate” an analog solution (pun 
intended) it will generally be lower 
power. Analog circuits also have the 
advantage of offering lower input-output 
delay and this can make them preferred 
(even required) in some application.
Analog solutions may also bring in an 
additional degree of freedom. In some 
applications you can tradeoff size for 
reduced noise.

ULP DONE PROPERLY IS 
LOWER COST BECAUSE 
AN EFFICIENT DESIGN 
WILL TYPICALLY HAVE 

FEWER GATES, USE 
LESS MEMORY, AND IS 
THEREFORE LIKELY TO 

CONSUME LESS POWER 
AND LESS SILICON AREA.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [154]   MARCH 2010

[dsp FORUM] continued

J. Henkel: I agree with most that has 
been said about analog. At the same time 
I want to point out that analog tech-
niques for low power are by far not as 
advanced as digital ones. For example, 
transistor sizing in digital is highly opti-
mized for low power. Techniques for 
optimizing sizing for analog transistors 
is often rather ad hoc and hence less 
power efficient. However, the whole pic-
ture in a DSP system might be more 
complex. Let’s assume that an analog 
signal is processed without the need to 
 convert it to digital. This saves the power 
the ADC/DAC consume and might com-
pensate for the effect I pointed out above.

Moderator: Let’s now look at ULP from 
an algorithm designer’s point of view. 
What should SP algorithm designers 
focus on to enable ULP implementations 
of their algorithms? 

J. Henkel: One important decision an 
algorithmic designer has to make is to 
determine the numerical representation 
of data in a DSP application i.e., to 
choose fixed point or floating point rep-
resentation. This decision will heavily 
impact the power consumption since not 
only the fixed point and floating point 
calculations differ widely in power con-
sumption but also the power related to 
storing/moving the respective data in/to/
from memory can differ by many x. The 
ULP algorithmic designer should there-
fore consciously and carefully weigh the 
use of floating point versus fixed point.

T. Schneider: Algorithm designers 
should focus on clever optimizations 
that retain (or alternatively tradeoff as 
little as possible) algorithm performance, 
while minimizing the computation load 
(and hence the clock speed). In our expe-
rience, the biggest gains are realized by 
efficient SP algorithms. Doing this al-
lows operation at reduced voltage that 
will deliver the reduced power. In many 
situations, partitioning an algorithm into 
elements that can be run in parallel 
across multiple computational units is 
an effective way to reduce power con-
sumption, provided communication 
overhead does not consume the power 

reduction that can be gained via this ap-
proach. If the parallel computation units 
can be made reconfigurable or hard 
coded (in hardware), additional efficien-
cies can also be gained through more ef-
ficient utilization of hardware resources. I 
would also argue that in the vast majori-
ty of applications, floating-point and ULP 
don’t mix. If you want the lowest possible 
power, you require a deep understanding 
of the algorithm and the minimum pre-
cision required to realize the required 
levels of performance.

PANELISTS
Gene Frantz (genf@ti.com) is the prin-
cipal fellow at Texas Instruments and 
has been with Texas Instruments for 
more than 30 years. He holds 40 patents 
in memories, speech, consumer prod-
ucts, and DSP. He has written more 
than 50 papers and articles. He is an 
IEEE Fellow.

Jörg Henkel (henkel@kit.edu) is the 
chair for Embedded Systems at Karlsruhe 
Institute of Technology, Germany. He 
was previously with NEC Laboratories in 
Princeton, New Jersey. His current 
research is focused on design and archi-
tectures for embedded systems with 
focus on low power and reliability. He 
received the 2008 DATE Best Paper 
Award and the 2009 IEEE/ACM William 
J. McCalla ICCAD Best Paper Award. He 
is the chair of the IEEE Computer 
Society, Germany Section, and the edi-
tor-in-chief of ACM Transactions on 
Embedded Computing Systems (ACM 
TECS). He is the coordinator and a 
founder of the German national research 
focal program “Design and Architecture 
for Dependable Embedded Systems.” He 
holds ten U.S. patents.

Jan Rabaey (jan@eecs.berkeley.edu) 
is the Donald O. Pederson Distinguished 
Professor in the Electrical Engineering 
and Computer Science Department at 
the University of California, Berkeley. 
He is the scientific codirector of the 
Berkeley Wireless Research Center, as 
well as the director of the GigaScale 
Systems Research Center. He received 
numerous scientific awards, including 

the 1985 IEEE Transactions on 
Computer Aided Design Best Paper 
Award (Circuits and Systems Society), 
t h e  1 9 8 9  P r e s i d e n t i a l  Yo u n g 
Investigator Award, the 1994 Signal 
Processing Society Senior Award, and 
the 2002 ISSCC Jack Raper Award. He 
serves on the technical advisory board 
of a wide range of companies. He is an 
IEEE Fellow.

Todd Schneider (Todd.Schneider@
onsemi.com) is the vice president of 
the Medical Diagnostics, Monitoring 
and Therapy product line at ON Se-
miconductor in Waterloo, Ontario, 
Canada. He holds BASc. and a MASc. 
degrees  f rom the Univers i ty  o f 
Waterloo, with a specialization in DSP. 
In 1998, he cofounded Dspfactory Ltd. 
He has published numerous refereed 
papers and conference proceedings. 
He also holds a number of U.S. and 
international patents in the field 
of DSP.

Marilyn Wolf (marilyn.wolf@ece.
gatech.edu) is the Rhesa “Ray” S. 
Farmer, Jr. distinguished chair in 
embedded computing systems, and the 
Georgia Research Alliance Eminent 
Scholar at the School of Electrical and 
Computer Engineering at the Georgia 
Institute of Technology. She was with 
AT&T Bell Laboratories in Murray Hill, 
New Jersey from 1984 to 1989. She was 
with Princeton University from 1989 
until 2007. She is a cofounder of 
Verificon Corporation. She helped to 
start several technical conferences, 
including CODES and MPSoC. She has 
written four textbooks.

MODERATOR
Umit Batur (batur@ti.com) received his 
B.S. degree in electrical engineering 
from Bilkent University, Turkey in 1998, 
and the M.S. and Ph.D. degrees in elec-
trical engineering from Georgia Institute 
of Technology, Atlanta in 2000 and 2003, 
respectively. In 2003, he joined the 
Digital Signal Processing R&D Center of  
Texas Instruments in Dallas, where he is 
currently the manager of the imaging 
R&D branch. [SP]
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[dates AHEAD]
Please send calendar submissions to: 
Dates Ahead, c/o Jessica Barragué, 
IEEE Signal Processing Magazine 
445 Hoes Lane, 
Piscataway, NJ 08854 USA, 
e-mail: j.barrague@ieee.org
(Colored conference title indicates  
SP-sponsored conference.)   

2010
[APRIL]
The 9th ACM/IEEE Conference on 
Information Processing in Sensor 
Networks (IPSN’10)
12–16 April, Stockholm, Sweden.
URL: http://ipsn.acm.org/2010

2010 IEEE International Symposium on 
Biomedical Imaging (ISBI 2010)
14–17 April, Rotterdam, The Netherlands. 
General Chair: Wiro Niessen
URL: http://www.biomedicalimaging.org
E-mail: isbi2010@bigr.nl

[JUNE]
The 5th IEEE International 
Conference on Cognitive Radio 

Oriented Wireless Networks and 
Communications (CrownCom 2010)
9–11 June, Cannes, France. 
Chairs: Erik G. Larsson and 
Aawatif Hayar
URL: http://www.crowncom2010.org/

The 2nd International Workshop on 
Cognitive Information Processing (CIP 2010)
14–16 June, Elba Island (Tuscany), Italy. 
General Cochairs: Fulvio Gini and Sergios 
Theodoridis
URL: http://www.conference.iet.unipi.it/
cip2010/

The 11th IEEE International Workshop 
on Signal Processing Advances in 
Wireless Communications (SPAW 2010)
20–23 June, Marrakech, Morocco. 
General Cochairs: Mounir Ghogho and 
Ananthram Swami
URL: http://www.spawc2010.org/

[JULY]
The IEEE International Conference on 
Multimedia & Expo (ICME 2010)
19–23 July, Singapore. 
General Chairs: Yap-Peng Tan and 
Oscar C. Au
URL: http://www.icme2010.org

[AUGUST]
The 2010 International Workshop on 
Machine Learning for Signal Processing 
(MLSP 2010)
29 August–1 September, Kittilä, Finland. 
General Chair: Erkki Oja
URL: http://mlsp2010.conwiz.dk/

[SEPTEMBER]
2010 International Conference 
on Image Processing (ICIP 2010)
26–29 September, Hong Kong.
General Chair: Wan-Chi Siu
URL: http://www.icip2010.org/icip2010.htm

[OCTOBER]
2010 IEEE Workshop on Signal 
Processing Systems (SiPS 2010)
6–10 October, San Francisco, California. 
General Cochairs: Shuvra Battacharyya and 
Jorn Janneck
URL: http://www.sips2010.org/

2010 IEEE International Symposium on 
Phased Array Systems and Technology 
(ARRAY’10)
12–15 October, Waltham, Massachusetts.
Conference Chair: Mark Russell 
URL: http://www.array2010.org/ Digital Object Identifier 10.1109/MSP.2009.935381

ACTIVE CONTOURS WITHOUT EDGES
Chan, T.F.; Vese, L.A.
IEEE Transactions on Image Processing, 
vol. 10, no. 2, Feb. 2001, pp. 266–277

This paper proposes a new model for active 
contours to detect objects in a given image, 
based on techniques of curve evolution, 
Mumford-Shah functional for segmentation 
and level sets.

100 7

REPRODUCIBLE RESEARCH IN 
SIGNAL PROCESSING
Vandewalle, P. ; Kovacevic, J.; Vetterli, M. 
IEEE Signal Processing Magazine, vol. 26, 
no. 3, May 2009, pp. 37–47 

This article suggests some practices for rais-
ing the quality of signal processing publica-
tions to an even higher level.

70 2

REMOVAL OF CORRELATED NOISE BY 
MODELING THE SIGNAL OF INTEREST IN 
THE WAVELET DOMAIN IMAGE 
Goossens, B.; Pizurica, A.; Philips, W.
IEEE Transactions on Image Processing,
vol. 18, no. 6, June 2009, pp. 1153–1165

This paper proposes a new denoising method 
for the removal of correlated noise, by 
modeling the significance of the noise-free 
wavelet coefficients in a local window using 
a new significance measure.

85 1

IEEE SPS CONFERENCES

ENVIRONMENTAL ROBUSTNESS IN 
AUTOMATIC SPEECH RECOGNITION
Acero, A.; Stern, R.M.
IEEE International Conference on Acoustics, 
Speech, and Signal Processing, vol. 2, 
Apr. 1990, pp. 849–852

This paper proposes two novel methods that 
are based on additive corrections in the 
cepstral domain in order to deal with differ-
ences in noise level and spectral tilt between 
close-talking and desk-top microphones.

47 1

TITLE, AUTHOR, PUBLICATION YEAR
IEEE SPS JOURNALS ABSTRACT

RANK IN IEEE TOP 100 
(MAY–OCT 2009)

N TIMES 
IN TOP 
100 SINCE 
JAN 2006OCT SEP AUG JUL JUN MAY
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[in the SPOTLIGHT] continued from page 160

The “center of gravity” of Friday after-
noon’s sessions included systems, con-
trol, and optimization. The session was 
chaired by LIDS Co-Associate Director 
Munther Dahleh (MIT), with a panel con-
sisting of principal speaker Keith Glover 
(Cambridge) and panelists Albert 
Benveniste (INRIA), Vincent Blondel 
(Catholic University of Louvain), Stephen 
Boyd (Stanford), Jonathan How (MIT), 
Richard Murray (California Institute of 
Technology), and Pablo Parrilo (MIT). 

Keith Glover gave an overview of the 
field and its central elements, including 
feedback, dealing with uncertainty, 
approximation, and verification and certi-
fication of performance. He also discussed 
areas appropriate for academic research, 
which ranged from design methodologies 
for particular applications to develop-
ment of verification tools. The other 

 presentations in the session spanned top-
ics that included a discussion of the cen-
tral role that computational methods 
play in our field (and in particular, in 
redefining what we mean by a “solu-
tion”); a presentation of grand challenges 
(including robust and certifiably correct 
control of networked systems such as 
smart grids, the need for learning algo-
rithms that lead to safe performance in a 
nonstationary world, and NASA’s Green 
Flight Challenge); a discussion of the 
challenges in controlling complex sys-
tems, with examples including the 
DARPA Urban Challenge and the stun-
ningly robust, computationally limited, 
and slow control system that allows a fly 
to maintain stable flight in the presence 
of sudden changes such as wind gusts; 
and a presentation on the challenges of 
“componentizing” control systems as is 

generally specified in the system engi-
neering of complex and often safety-criti-
cal man-made systems, and the clear 
need for those in systems and control to 
contribute to the overall system-wide 
issues as well as to the components.

The symposium banquet was held 
Friday evening and included a talk by 
Alan Willsky on the long and celebrated 
history of LIDS, beginning with its days 
as the Servomechanism Laboratory 
extending back to the period prior to 
the Second World War until now (see 
Figure 3). The talk recognized the 
major figures whose contributions 
fueled the laboratory’s major role in 
academia and society, as well as high-
lighting many of the contributions over 
the years, which included:

the development of high-perfor- ■

mance fire control systems
the invention of magnetic core  ■

memory
major advances in numerically con- ■

trolled machines
some of the earliest efforts in CAD  ■

and database systems
a leadership role in the develop- ■

ment of modern control and the devel-
opment of robust control methods

the broadening of its agenda to  ■

include networked systems ranging 
from communication and transporta-
tion networks to power grids

the expansion of efforts in statisti- ■

cal signal processing and learning
continuing advances in optimiza- ■

tion algorithms
a strong record of theoretical  ■

advances, influential texts, and an 

[FIG2] The distinguished panel for the session in honor of Sanjoy Mitter (MIT).  From left to right:  Tom Kailath (Stanford), Dimitri 
Bertsekas (MIT), Y.C. (Larry) Ho (Harvard), Pravin Varaiya (University of California, Berkeley), Jan Willems (Catholic University of 
Louvain), Roger Brockett (Harvard), Petar Kokotovic (University of California, Santa Barbara), and Karl Åström (Lund Institute).
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[FIG3] Alan Willsky (MIT) gives a talk “LIDS Through the Years” at the banquet. A pair of 
photos of Sanjoy Mitter (MIT) are in the background.  
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impressive array of former students, 
colleagues, and visitors.
A plenary talk “System Theory: A 

Retrospective and Prospective Look” by 
Sanjoy Mitter was given Saturday morn-
ing. This far-reaching lecture provided 
both concrete and philosophical remarks 
about revolutionary science and argued 
that such a revolution took place in sys-
tem theory in the 1960s, with its key ele-
ments being the emerging central role of 
computation, a new language leading to 
state space models, and the exploitation of 
this language to gain a far deeper under-
standing of systems as well as powerful 
new methods. Mitter argued that the chal-
lenges of today, in particular networked 
systems, might require some new ele-
ments and lead to new structural insights 
and methods. The talk also touched on 
pattern recognition and artificial intelli-
gence and their close intellectual ties to 
information and decision systems as well 
as ties of Bayesian inference to statistical 
mechanics, a topic that resonates with the 
role of physics in understanding some of 
the core models and methods in machine 
learning. He discussed the challenges and 
opportunities that arise when one brings 
the constraints of communication systems 
into the design of control systems and 
closed with a list of challenges that could, 
by itself, fuel the field for a very long time.

The Saturday morning panel discus-
sion had networks and information 
(broadly defined) as its center of gravity 
(see Figure 4). This session was chaired 
by LIDS Co-Associate Director John 
Tsitsiklis (MIT). John Doyle (Cal Tech) 
was the lead speaker in the session, 
together with a panel consisting of P.R. 
Kumar (Illinois), Asuman Ozdaglar 
(MIT), H. Vincent Poor (Princeton), 
Balaji Prabhakar (Stanford), Jeff Shamma 
(Georgia Tech), and David Tse (University 
of California, Berkeley). In his presenta-
tion, John Doyle gave a far-reaching dis-
course on networks, layered systems, 
their fragility and challenges in their 
design, as well as a contrasting view of 
some man-made networks (such as the 
Internet and power grids) and biological 
systems (e.g., bacteria), pointing out 
similarities, differences, and challenges 
for those of us in the information and 

decision sciences. The presentations of 
other panelists included 

an examination of application and  ■

domain challenges (including wireless 
security and multimedia communica-
tions) to “pull” the development of 
methodology and the “push” of spe-
cific technical challenges (e.g., in 
information theory and finite-block-
length capacity)

an examination, through example,  ■

of why it is worthwhile to continue 
examining very hard problems and 
looking for ways in which to reformu-
late them creatively in ways that over-
come technical difficulties and lead to 
new results and insights

an examination of the serious chal- ■

lenges in interplay of networks and 
information (including control of dis-
tributed systems over unreliable net-
works,  methods for verifying 
performance, and distributing infor-
mation processing as a problem 
blending computation, communica-
tion, and inference)

the design of incentive systems  ■

for complex transportation net-
works to influence behavior and 
reduce congestion

challenges and opportunities in  ■

network games and in understanding 
dynamics, learning, and decision-mak-
ing in social and economic networks.
The afternoon panel discussion, focus-

ing on signal processing, inference, and 
learning, was chaired by Alan Willsky (see 
Figure 5). The lead speaker in this session 
was Michael Jordan (University of 
California, Berkeley), who was joined by 

Alfred Hero (Michigan), Sanjeev Kulkarni 
(Princeton), Robert Nowak (Wisconsin), 
Pietro Perona (Cal Tech), Devavrat Shah 
(MIT), and Martin Wainwright (University 
of California, Berkeley). Jordan’s presenta-
tion provided an overview of the broad area 
of machine learning and its ties to prob-
lems in a vast array of fields. He provided a 
view of current trends in machine learning 
including nonparametric Bayesian meth-
ods (with applications in signal and image 
processing highlighted), the challenges 
that the availability of massive data sets 
presents to those in learning and model-
ing; the investigation of “Objective Bayes” 
methods, which provide a unifying blend 
between Bayesian and frequentist views of 
statistics, with many ties to information 
theory; the great interest in methods that 
capture or recover “sparsity” in one form 
or another; and the challenge of bringing 
control and statistics together in the same 
synergistic way as optimization and statis-
tics. Other presentations provided discus-
sions of machine learning challenges in 
computer vision (e.g., so that one can 
search on parts of images or so that we can 
capture a human’s ability to recognize new 
objects quickly); the challenging dynamic 
learning problems embedded in the opera-
tion of engineered networks (e.g., medium 
access control) and the role of so-called 
message passing algorithms; the challeng-
es and opportunities in confronting 
increasingly high-dimensional data sets 
(with applications in learning graphical 
models) and the “blessings” as well as the 
well-known curses of dimensionality (with 
applications in sparse reconstruction and 
the uncovering of scaling laws) as well as 

[FIG4] The Saturday morning panel focused on networks and information. From left 
to right:  Asuman Ozdaglar (MIT), P.R. Kumar (Illinois), H. Vincent Poor (Princeton), 
John Doyle (Cal Tech), Balaji Prabhakar (Stanford), David Tse (University of California, 
Berkeley), and Jeff Shamma (Georgia Tech). 
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[in the SPOTLIGHT] continued

the posing of a question seen in other ses-
sions as well, namely the tradeoff between 
computational effort and performance; the 
challenges in distributed or networked 
learning, and the fusion or aggregation of 
heterogeneous and nontraditional signal 
and data sources (ranging from sensor 
outputs to written text to forecasts of mul-
tiple agents); integrative modeling, predic-
tion, and uncertainty assessment with 

predictive health and disease detection as a 
motivating application and challenge, 
characterized by heterogeneous data and 
diverse outputs (ranging from individual 
predictions to drug effectiveness assess-
ment); and the use of feedback in sensing 
systems, i.e., the control or selection of 
measurements to be taken driven by the 
information state resulting from data 
already collected.

The meeting attracted a substantial 
number of researchers from around the 
world, leading to lively discussions that 
prompted our inviting participants to 
continue this conversation and to pro-
vide short perspective and position 
papers through the end of 2009. The Web 
site for this meeting http://paths.lids.mit.
edu includes not only a statement of pur-
pose, agenda, and list of sponsors, but 
also a complete collection of files gener-
ated by this meeting. This includes 
a) video of the entire meeting; b) all pan-
elist slides; c) short perspectives and 
position papers submitted by attendees; 
and d) a summary document produced 
by Munther Dahleh, John Tsitsiklis, and 
Alan Willsky.

AUTHOR
Alan S. Willsky (willsky@mit.edu) is the 
Edwin Sibley Webster Professor of electri-
cal engineering and computer science 
and director of the Laboratory for 
Information and Decision Systems at MIT. 
He was a founder of Alphatech, Inc. and 
chief scientific consultant, a role in which 
he continues at BAE Systems Advanced 
Information Technologies. From 1998 to 
2002, he served on the U.S. Air Force 
Scientific Advisory Board. He has received 
several awards including the 1975 
American Automatic Control Council 
Donald P. Eckman Award, the 1979 ASCE 
Alfred Noble Prize, the 1980 IEEE 
Browder J. Thompson Memorial Award, 
the 1988 IEEE Control Systems Society 
Distinguished Member Award, the 2004 
IEEE Donald G. Fink Prize Paper Award, 
and the 2005 Doctorat Honoris Causa 
from Université de Rennes. He is coau-
thor of Signals and Systems. [SP]

[FIG5] The afternoon panel discussion focused on inference, signal processing, and learning.  From left to right: Alan Willsky (MIT), Mike 
Jordan (University of California, Berkeley), Sanjeev Kulkarni (Princeton), Devavrat Shah (MIT), Martin Wainwright (University of California, 
Berkeley), Pietro Perona (Cal Tech), and Al Hero (Michigan).  (One of the panelists, Rob Nowak (Wisconsin) was unable to attend.)
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The International Association of Science 
and Technology for Development
Building B6, Suite #101, 2509 Dieppe Avenue SW
Calgary, Alberta, Canada T3E 7J9 
Phone: +1 403 288 1195  |  Fax: +1 403 247 6851
Email: calgary@iasted.org  |  Web Site: www.iasted.org

The Twelfth IASTED International Conference on

Signal and Image Processing
~SIP 2010~

August 23 – 25, 2010  |  Maui, Hawaii, USA

Conference Chair
Dr. Bruce Flinchbaugh
Texas Instruments, USA

This international event will bring together 
researchers and practitioners of signal and 
image processing from universities, 
corporations, and research laboratories to 
present and observe the latest research and 
ideas in these areas.
All papers submissions will be double blind 
evaluated by at least two reviewers. 
Acceptance will be based primarily on 
originality and contribution.

Submission Deadline: April 1, 2010
For more information, please go to: 
www.iasted.org/conferences/home-710.html

__

__________

_____________________________

_________

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

mailto:willsky@mit.edu
mailto:calgary@iasted.org
http://www.qmags.com/clickthrough.asp?url=www.iasted.org&id=15415&adid=P158A1
http://www.qmags.com/clickthrough.asp?url=www.iasted.org/conferences/home-710.html&id=15415&adid=P158A2
http://paths.lids.mit.edu
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [159]   MARCH 2010

The Advertisers Index contained in this issue is compiled as a service to our readers and advertisers: the publisher is 
not liable for errors or omissions although every effort is made to ensure its accuracy. Be sure to let our advertisers 
know you found them through IEEE Signal Processing Magazine.

COMPANY PAGE# URL PHONE
ESC 5 www.embedded.com/esc/sv 
IASTED 158 www.iasted.org/conferences/ 
  home-710.html  +1 403 288 1195
John Wiley & Sons 7 www.wiley.com +1 877 762 2974
Mathworks CVR 4 www.mathworks.com/connect +1 508 647 7040
Mini-Circuits CVR 2, 3, CVR 3 www.minicircuits.com +1 718 934 4500

[advertisers INDEX]

[advertising SALES OFFICES]
James A. Vick
Staff Director, Advertising
Phone: +1 212 419 7767; 
Fax: +1 212 419 7589
jv.ieeemedia@ieee.org 

Marion Delaney
Advertising Sales Director
Phone: +1 415 863 4717; 
Fax: +1 415 863 4717
md.ieeemedia@ieee.org

Susan E. Schneiderman
Business Development Manager
Phone: +1 732 562 3946; 
Fax: +1 732 981 1855
ss.ieeemedia@ieee.org

Product Advertising
MIDATLANTIC
Lisa Rinaldo 
Phone: +1 732 772 0160; 
Fax: +1 732 772 0164
lr.ieeemedia@ieee.org
NY, NJ, PA, DE, MD, DC, KY, WV

NEW ENGLAND/ EASTERN CANADA 
Jody Estabrook
Phone: +1 774 283 4528; 
Fax: +1 774 283 4527
je.ieeemedia@ieee.org
ME, VT, NH, MA, RI, CT
Canada: Quebec, Nova Scotia, 
Newfoundland, Prince Edward Island, 
New Brunswick

SOUTHEAST 
Thomas Flynn
Phone: +1 770 645 2944; 
Fax: +1 770 993 4423
tf.ieeemedia@ieee.org
VA, NC, SC, GA, FL, AL, MS, TN

MIDWEST/CENTRAL CANADA
Dave Jones 
Phone: +1 708 442 5633; 
Fax: +1 708 442 7620
dj.ieeemedia@ieee.org 

IL, IA, KS, MN, MO, NE, ND, 
SD, WI, OH
Canada: Manitoba, 
Saskatchewan, Alberta

MIDWEST/ ONTARIO, 
CANADA
Will Hamilton 
Phone: +1 269 381 2156; 
Fax: +1 269 381 2556
wh.ieeemedia@ieee.org
IN, MI. Canada: Ontario

SOUTHWEST
Shaun Mehr
Phone: +1 949 923 1660; 
Fax: +1 775 908 2104
sm.ieeemedia@ieee.org
AR, LA, OK, TX

WEST COAST/ NORTHWEST/
WESTERN CANADA 
Marshall Rubin
Phone: +1 818 888 2407; 
Fax: +1 818 888 4907 
mr.ieeemedia@ieee.org
AZ, CO, HI, NM, NV, UT, AK, ID, MT, 
WY, OR, WA, CA. Canada: British 
Columbia

EUROPE/AFRICA/MIDDLE EAST 
Heleen Vodegel
Phone: +44 1875 825 700; 
Fax: +44 1875 825 701
hv.ieeemedia@ieee.org
Europe, Africa, Middle East

ASIA/FAR EAST/PACIFIC RIM
Susan Schneiderman 
Phone: +1 732 562 3946; 
Fax: +1 732 981 1855
ss.ieeemedia@ieee.org
Asia, Far East, Pacific Rim, 
Australia, New Zealand

Recruitment Advertising
MIDATLANTIC
Lisa Rinaldo
Phone: +1 732 772 0160; 
Fax: +1 732 772 0164
lr.ieeemedia@ieee.org
NY, NJ, CT, PA, DE, MD, DC, KY, WV

NEW ENGLAND/EASTERN CANADA
John Restchack
Phone: +1 212 419 7578; 
Fax: +1 212 419 7589
j.restchack@ieee.org
ME, VT, NH, MA, RI. Canada: Quebec, 
Nova Scotia, Prince Edward Island, 
Newfoundland, New Brunswick

SOUTHEAST
Cathy Flynn
Phone: +1 770 645 2944; 
Fax: +1 770 993 4423
cf.ieeemedia@ieee.org
VA, NC, SC, GA, FL, AL, MS, TN

MIDWEST/TEXAS/CENTRAL CANADA
Darcy Giovingo
Phone: +1 847 498 4520; 
Fax: +1 847 498 5911
dg.ieeemedia@ieee.org; 
AR, IL, IN, IA, KS, LA, MI, MN, MO, NE, 
ND, SD, OH, OK, TX, WI. Canada: 
Ontario, Manitoba, Saskatchewan, Alberta

WEST COAST/SOUTHWEST/
MOUNTAIN STATES/ASIA
Tim Matteson
Phone: +1 310 836 4064; 
Fax: +1 310 836 4067
tm.ieeemedia@ieee.org
AZ, CO, HI, NV, NM, UT, CA, AK, ID, MT, 
WY, OR, WA. Canada: British Columbia

EUROPE/AFRICA/MIDDLE EAST
Heleen Vodegel
Phone: +44 1875 825 700; 
Fax: +44 1875 825 701
hv.ieeemedia@ieee.org
Europe, Africa, Middle East

 Digital Object Identifier 10.1109/MSP.2009.935380 

_________

_____________

______________

_____________

____________

_____________

_____________

_____________

_____________

_____________

_____________

_____________

_____________

_____________

____________

_____________

_____________

_____________

____________

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

http://www.embedded.com/esc/sv
http://www.wiley.com
http://www.mathworks.com/connect
http://www.minicircuits.com
mailto:jv.ieeemedia@ieee.org
mailto:md.ieeemedia@ieee.org
mailto:ss.ieeemedia@ieee.org
mailto:lr.ieeemedia@ieee.org
mailto:je.ieeemedia@ieee.org
mailto:tf.ieeemedia@ieee.org
mailto:dj.ieeemedia@ieee.org
mailto:wh.ieeemedia@ieee.org
mailto:sm.ieeemedia@ieee.org
mailto:mr.ieeemedia@ieee.org
mailto:hv.ieeemedia@ieee.org
mailto:ss.ieeemedia@ieee.org
mailto:lr.ieeemedia@ieee.org
mailto:j.restchack@ieee.org
mailto:cf.ieeemedia@ieee.org
mailto:dg.ieeemedia@ieee.org;
mailto:tm.ieeemedia@ieee.org
mailto:hv.ieeemedia@ieee.org
http://www.iasted.org/conferences/home-710.html
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [160]   MARCH 2010

[in the SPOTLIGHT]

1053-5888/10/$26.00©2010IEEE

 Digital Object Identifier 10.1109/MSP.2009.935454

Paths Ahead in the Science 
of Information and Decision Systems

O
n 12–14 November 2009, 
a significant meeting, the 
symposium on “Paths 
Ahead in the Science of 
Information and Deci-

s ion Systems” was held at  the 
Massachusetts Institute of Technology 
(MIT). This meeting was organized and 
run by MIT’s Laboratory for Information 
and Decision Systems (LIDS), the old-
est continuing laboratory at MIT. LIDS 
has played (and continues to play) a 
major role in the development of our 
field, responding to critical national 
and societal needs; developing funda-
mental and path-breaking advances in 
theory, methodology, and practice; and 
serving as a focal point for activities 
involving the best across MIT, the 
nation, and the world. 

The science of information and deci-
sion systems encompasses a substantial 
and exceptionally pervasive set of inter-
related disciplines, ranging from signal 
and image processing; to embedded con-
trol systems; to the analysis, design, and 
optimization of complex distributed sys-
tems and networks. Thanks both to the 
richness of the challenges throughout 
engineering and the physical, biological, 
and social sciences, as well as the con-
tinuing developments of the foundations 
of our disciplines, the information and 
decision sciences stand today as an excit-
ing, continually evolving, and critical 
domain of intellectual inquiry. 

Consistent with that history and mis-
sion, LIDS organized the Paths Ahead 
Symposium, bringing together leading 
researchers from all around the world 
who have been influential in shaping the 
vision of and leading this broad field. 
Sponsored by  MIT’s  School  o f 
Engineering as well as by a number of 
private companies, laboratories, and by 

the National Science Foundation, the Air 
Force Office of Scientific Research, and 
the Army Research Office, the meeting 
consisted of several panel-oriented ses-
sions, providing both context and history 
as well as a look across disciplines for 
challenges and opportunities for the 
future. While each of these sessions had 
a specific theme, an overall objective of 
each session was to look across disci-
plines for challenges and opportunities 
across disciplines.

The meeting, which attracted 340 reg-
istrants, began with a reception on 12 
November at the MIT Museum. Technical 
sessions began on 13 November with wel-
coming remarks given by Alan Willsky, 
the symposium general chair and LIDS 
director (see Figure 1). 

The morning session on Friday was 
organized in honor of Sanjoy Mitter, a 
major leader in the field and former direc-
tor of LIDS, who recently retired from 
MIT (although one would not know that 
from his continued presence). This ses-
sion was chaired by Thomas Magnanti 
(MIT), former dean of engineering at MIT 
and long-time collaborator with Mitter. 
The panelists were Karl Johan Åström 
(Lund Inst.), Dimitri Bertsekas (MIT), 
Roger Brockett (Harvard), Y.C. (Larry) Ho 

(Harvard), Thomas Kailath (Stanford), 
Petar Kokotovic (University of California, 
Santa Barbara), Pravin Varaiya (University 
of California, Berkeley), and Jan Willems 
(Catholic University of Louvain) (see 
Figure 2). The presentations and discus-
sion in this section included personal per-
spectives on the past history of research in 
this broad field, some challenges and 
exciting opportunities that are before us, 
and the challenge of educating our stu-
dents in a field with the breadth that the 
information and decision sciences possess. 

Some of the challenges that were 
brought up by the panel were those cen-
tral to the social agenda and the exciting 
areas of research of today, including 
energy, transportation, biology, and 
health care. Intellectual challenges, 
including the development of new meth-
ods to deal with compositional descrip-
tions of complex systems and the broad 
area of networks, information, and con-
trol were also discussed, as were continu-
ing areas such as robotics, embedded 
systems, and autonomy. The intellectual 
vibrancy of our field and its ability to 
move with agility into new domains were 
evident throughout.

[FIG1] The audience listens at the opening session on 13 November 2009.  
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(continued on page 156)

Alan S. Willsky
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Want a miniature surface mount, shielded plug-in, or rugged 
coaxial voltage controlled oscillator with the right stuff 
for your project? Contact Mini-Circuits! From custom 
designs to standard catalog models always in stock, 
we’ll supply extra robust, 100% tested VCO solutions 
you need at a price you can afford. Choose from narrow to 
broad to octave band widths. Select linear tuning, low 
phase noise, and 5 V models optimized for PLLs and 
synthesizers. And pick from an innovative array of 
miniature SM packages as small as 0.370” square 
for a variety of designs and applications. You can 
quickly find the model you need using “The YONI2 
Search Engine” at the Mini-Circuits web site. Just enter 
your specifications into YONI2...click...and immediately 

start evaluating suggested VCO solutions using the 
actual measured performance data displayed. But 
perhaps you need a custom design. Not a problem! 
Contact us for our lightning fast response, low prices, and 
quick turnaround. Give the competition real competition... 
specify Mini-Circuits VCOs!
            
        

W O R L D ’ S  W I D E S T  S E L E C T I O N

VCOsVCOs

10 to 6840 MHz from $1195
ea. (qty. 5)

RoHS models available, 
consult factory. 

 

o S
C O M P L I A N T

TM

Mini-Circuits...Your partners for success since 1969

 
 For high reliability, all Mini-Circuits 

VCOs are tested with the
Agilent E5052B Signal Source Analyzer.

www.agilent.com/find/ssa       

®

The Design Engineers Search Engine finds the model you need, Instantly • For detailed performance specs & shopping online see

        IF/RF MICROWAVE COMPONENTS

TM

ISO 9001 ISO 14001 AS 9100 CERTIFIED
P.O.  Box 350166, Brooklyn, New York 11235-0003  (718) 934-4500  Fax (718) 332-4661
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Agilent

Tektronix

LeCroy

Rohde & Schwarz

National Instruments

Anritsu

Keithley

Yokogawa

Tabor

Pickering

GPIB

LXI

IVI

TCP/IP

VISA

USB

UDP

RS-232

Connect to your test equipment
directly from MATLAB ® using standard
communication protocols and hundreds
of available instrument drivers.

Analyze and visualize your test results
using the full numerical and graphical
power of MATLAB.

For more information on supported hard-
ware, visit www.mathworks.com/connect

© 2009 The MathWorks, Inc.
MATLAB is a registered trademark of The MathWorks, Inc. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

TM

MATLAB
CONNECTS

TO YOUR TEST
HARDWARE

GPIB
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